RESEARCH PAPERS
 FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

SINGULARLY PERTURBED LINEAR NEUMANN PROBLEM WITH THE CHARACTERISTIC ROOTS ON THE IMAGINARY AXIS

Ludmila VACULÍKOVÁ, Vladimír LIŠKA

Abstract

We investigate the problem of existence and asymptotic behavior of solutions for the singularly perturbed linear Neumann problem $$
\begin{gathered} \varepsilon y^{\prime \prime}+k y=f(t), \quad k>0, \quad 0<\varepsilon \ll 1, \quad t \in\langle a, b\rangle \\ y^{\prime}(a)=0, \quad y^{\prime}(b)=0 . \end{gathered}
$$

Our approach relies on the analysis of integral equation equivalent to the problem above.

Key words

singularly perturbed ODE, Neumann problem, boundary condition, characteristic roots

Introduction

In this paper, we will study the singularly perturbed linear problem

$$
\begin{equation*}
\varepsilon y^{\prime \prime}+k y=f(t), \quad k>0, \quad 0<\varepsilon \ll 1, f \in C^{3}(\langle a, b\rangle) \tag{1.1}
\end{equation*}
$$

with Neumann boundary condition

$$
\begin{equation*}
y^{\prime}(a)=0, \quad y^{\prime}(b)=0 \tag{1.2}
\end{equation*}
$$

[^0]We can view this equation as a mathematical model of the dynamical systems with high-speed feedback. The situation considered here is complicated by the fact that a characteristic equation of this differential equation has roots on the imaginary axis i.e. the system be not hyperbolic. For hyperbolic ones the dynamics close critical manifold is wellknown (see e.g. [1], [3-10]), but for the non-hyperbolic systems the problem of existence and asymptotic behaviour is open in general and leads to the substantial technical difficulties in nonlinear case [2]. The considerations below may be instructive for these ones.

We prove, that there exist infinitely many sequences $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}, \varepsilon_{n} \rightarrow 0^{+}$such that $y_{\varepsilon_{n}}(t)$ converges uniformly to $u(t)$ on $\langle a, b\rangle$ where y_{ε} is a solution of problem (1.1), (1.2) and u is a solution of reduced problem (when we put $\varepsilon=0$ in (1.1)) $\quad k u=f(t)$ i.e. $u(t)=\frac{f(t)}{k}$.

We will consider for the parameter ε the set J_{n} only,

$$
J_{n}=\left\langle k\left(\frac{b-a}{(n+1) \pi-\lambda}\right)^{2}, k\left(\frac{b-a}{n \pi+\lambda}\right)^{2}\right\rangle n=0,1,2, \ldots,
$$

where $\lambda>0$ be arbitrarily small but fixed constant which guarantees the existence and uniqueness of the solutions of (1.1), (1.2).

Example. Consider the linear problem

$$
\begin{array}{cl}
\varepsilon y^{\prime \prime}+k y=e^{t}, \quad k>0, & 0<\varepsilon \ll 1, \quad t \in\langle a, b\rangle \\
y^{\prime}(a)=0, & y^{\prime}(b)=0 .
\end{array}
$$

and its solution

$$
y_{\varepsilon}(t)=\frac{-e^{a} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-t)\right]+e^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(t-a)\right]}{\sqrt{\frac{k}{\varepsilon}}(k+\varepsilon) \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]}+\frac{e^{t}}{k+\varepsilon} .
$$

Hence, for every sequence $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}, \varepsilon_{n} \in J_{n}$ the solution of considered problem

$$
y_{\varepsilon_{n}}(t)=\frac{e^{t}}{k+\varepsilon_{n}}+O\left(\sqrt{\varepsilon_{n}}\right)
$$

converges uniformly for $n \rightarrow \infty$ to the solution $u(t)=\frac{e^{t}}{k}$ of the reduced problem on $\langle a, b\rangle$. The main result of this article is the following one.

Main result

Theorem. For all $f \in C^{3}(\langle a, b\rangle)$ and for every sequence $\left\{\varepsilon_{n}\right\}_{n=0}^{\infty}, \varepsilon_{n} \in J_{n}$ there exists a unique solution y_{ε} of problem (1.1), (1.2) satisfying

$$
y_{\varepsilon_{n}} \rightarrow u \text { uniformly on }\langle a, b\rangle \quad \text { for } n \rightarrow \infty
$$

More precisely,

$$
y_{\varepsilon_{n}}(t)=u(t)+O\left(\sqrt{\varepsilon_{n}}\right) \quad \text { on }\langle a, b\rangle
$$

Proof. Firstly, we show that

$$
\begin{equation*}
y_{\varepsilon}(t)=\frac{\cos \left[\sqrt{\frac{k}{\varepsilon}}(t-a)\right]_{a}^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f(s)}{\varepsilon} d s}{\sqrt{\frac{k}{\varepsilon}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]}+\int_{a}^{t} \frac{\sin \left[\sqrt{\frac{k}{\varepsilon}}(t-s)\right] \frac{f(s)}{\varepsilon}}{\sqrt{\frac{k}{\varepsilon}}} d s \tag{2.1}
\end{equation*}
$$

is a solution of (1.1), (1.2). Differentiating (2.1) twice, taking into consideration that

$$
\frac{d}{d t} \int_{a}^{t} H(t, s) f(s) d s=\int_{a}^{t} \frac{\partial H(t, s)}{\partial t} f(s) d s+H(t, t) f(t)
$$

we obtain

$$
\begin{gather*}
y_{\varepsilon}^{\prime}(t)=-\frac{\sqrt{\frac{k}{\varepsilon}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(t-a)\right] \int_{a}^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f(s)}{\varepsilon} d s}{\sqrt{\frac{k}{\varepsilon}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]}+\int_{a}^{t} \frac{\sqrt{\frac{k}{\varepsilon}} \cos \left[\sqrt{\frac{k}{\varepsilon}}(t-s)\right] \frac{f(s)}{\varepsilon}}{\sqrt{\frac{k}{\varepsilon}}} d s \tag{2.2}\\
y_{\varepsilon}^{\prime \prime}(t)=-\frac{\left(\sqrt{\frac{k}{\varepsilon}}\right)^{2} \cos \left[\sqrt{\frac{k}{\varepsilon}}(t-a)\right]_{a}^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f(s)}{\varepsilon} d s}{\sqrt{\frac{k}{\varepsilon}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]}- \\
-\int_{a}^{t} \frac{\left(\sqrt{\frac{k}{\varepsilon}}\right)^{2} \sin \left[\sqrt{\frac{k}{\varepsilon}}(t-s)\right] \frac{f(s)}{\varepsilon}}{\sqrt{\frac{k}{\varepsilon}}} d s+\frac{f(t)}{\varepsilon} . \tag{2.3}
\end{gather*}
$$

From (2.3) and (2.1) after a little algebraic arrangement, we get

$$
y_{\varepsilon}^{\prime \prime}=\frac{k}{\varepsilon}\left(-y_{\varepsilon}\right)+\frac{f(t)}{\varepsilon}
$$

i.e. y_{ε} is a solution of differential equation (1.1), and from (2.2) it is easy to verify that this solution satisfies (1.2).

Let $t_{0} \in\langle a, b\rangle$ be arbitrary, but fixed. Denote by I_{1} and I_{2} the integrals

$$
\begin{aligned}
& I_{1}=\int_{a}^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f(s)}{\varepsilon} d s \\
& I_{2}=\int_{a}^{t_{0}} \sin \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] \frac{f(s)}{\varepsilon} d s
\end{aligned}
$$

Then

$$
y_{\varepsilon}\left(t_{0}\right)=\frac{\cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-a\right)\right] I_{1}}{\sqrt{\frac{k}{\varepsilon}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]}+\frac{I_{2}}{\sqrt{\frac{k}{\varepsilon}}}
$$

Integrating I_{1} and I_{2} by parts, we obtain

$$
\begin{aligned}
& I_{1}=\left|\begin{array}{c}
h^{\prime}=\cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \quad g=\frac{f(s)}{\varepsilon} \\
h=-\sqrt{\frac{\varepsilon}{k}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \quad g^{\prime}=\frac{f^{\prime}(s)}{\varepsilon}
\end{array}\right|= \\
& =\sqrt{\frac{\varepsilon}{k}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right] \frac{f(a)}{\varepsilon}+\int_{a}^{b} \sqrt{\frac{\varepsilon}{k}} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f^{\prime}(s)}{\varepsilon} d s
\end{aligned}
$$

$$
I_{2}=\left|\begin{array}{cc}
h^{\prime}=\sin \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] & g=\frac{f(s)}{\varepsilon} \\
h=\sqrt{\frac{\varepsilon}{k}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] & g^{\prime}=\frac{f^{\prime}(s)}{\varepsilon}
\end{array}\right|=
$$

$$
=\frac{\sqrt{\frac{\varepsilon}{k}} f\left(t_{0}\right)}{\varepsilon}-\sqrt{\frac{\varepsilon}{k}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-a\right)\right] \frac{f(a)}{\varepsilon}-\int_{a}^{t_{0}} \sqrt{\frac{\varepsilon}{k}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] \frac{f^{\prime}(s)}{\varepsilon} d s
$$

Also
$y_{\varepsilon}\left(t_{0}\right)=\frac{f\left(t_{0}\right)}{k}+\frac{\cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-a\right)\right]}{\sin \left[\sqrt{\frac{k}{\varepsilon}}(b-a)\right]} \int_{a}^{b} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] \frac{f^{\prime}(s)}{k} d s-\int_{a}^{t_{0}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] \frac{f^{\prime}(s)}{k} d s$.
Now we estimate $\quad y_{\varepsilon}\left(t_{0}\right)-\frac{f\left(t_{0}\right)}{k}$. We obtain
$\left|y_{\varepsilon}\left(t_{0}\right)-\frac{f\left(t_{0}\right)}{k}\right| \leq \frac{1}{k \sin \lambda}\left|\int_{a}^{b} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] f^{\prime}(s) d s\right|+\frac{1}{k}\left|\int_{a}^{t_{0}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] f^{\prime}(s) d s\right|$.
The integrals in (2.4) converge to zero for $\varepsilon=\varepsilon_{n}, \varepsilon_{n} \in J_{n}, n \rightarrow \infty$.
Indeed, with respect to assumption on f, we may integrate by parts in (2.4). Thus,
$\int_{a}^{b} \sin \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] f^{\prime}(s) d s=\left[\sqrt{\frac{\varepsilon}{k}} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] f^{\prime}(s)\right]_{a}^{b}-\int_{a}^{b} \sqrt{\frac{\varepsilon}{k}} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] f^{\prime \prime}(s) d s \leq$
$\leq \sqrt{\frac{\varepsilon}{k}}\left(\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|+\left|\int_{a}^{b} \cos \left[\sqrt{\frac{k}{\varepsilon}}(b-s)\right] f^{\prime \prime}(s) d s\right|\right) \leq$
$\leq \sqrt{\frac{\varepsilon}{k}}\left\{\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|+\sqrt{\frac{\varepsilon}{k}}\left(\left|f^{\prime \prime}(a)\right|+\mu_{2}(b-a)\right)\right\}$
and
$\int_{a}^{t_{0}} \cos \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] f^{\prime}(s) d s=\left[-\sqrt{\frac{\varepsilon}{k}} \sin \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] f^{\prime}(s)\right]_{a}^{t_{0}}+\int_{a}^{t_{0}} \sqrt{\frac{\varepsilon}{k}} \sin \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] f^{\prime \prime}(s) d s \leq$
$\leq \sqrt{\frac{\varepsilon}{k}}\left(\left|f^{\prime}(a)\right|+\left|\int_{a}^{t_{0}} \sin \left[\sqrt{\frac{k}{\varepsilon}}\left(t_{0}-s\right)\right] f^{\prime \prime}(s) d s\right|\right) \leq$
$\leq \sqrt{\frac{\varepsilon}{k}}\left\{\left|f^{\prime}(a)\right|+\sqrt{\frac{\varepsilon}{k}}\left(\mu_{1}+\left|f^{\prime \prime}(a)\right|+\mu_{2}(b-a)\right)\right\}$,
where $\mu_{1}=\sup _{t \in\{a, b\rangle}\left|f^{\prime \prime}(t)\right|$ and $\mu_{2}=\sup _{t \in\langle a, b\rangle}\left|f^{\prime \prime \prime}(t)\right|$.
Substituting (2.5) and (2.6) into (2.4), we obtain an a priori estimate of solutions of (1.1), (1.2) for all $t_{0} \in\langle a, b\rangle$ of the form

$$
\begin{align*}
& \left|y_{\varepsilon}\left(t_{0}\right)-\frac{f\left(t_{0}\right)}{k}\right| \leq \frac{1}{k \sin \lambda} \sqrt{\frac{\varepsilon}{k}}\left\{\left|f^{\prime}(a)\right|+\left|f^{\prime}(b)\right|+\sqrt{\frac{\varepsilon}{k}}\left(\left|f^{\prime \prime}(a)\right|+\mu_{2}(b-a)\right)\right\}+ \\
& +\frac{1}{k} \sqrt{\frac{\varepsilon}{k}}\left\{\left|f^{\prime}(a)\right|+\sqrt{\frac{\varepsilon}{k}}\left(\mu_{1}+\left|f^{\prime \prime}(a)\right|+\mu_{2}(b-a)\right)\right\} \tag{2.7}
\end{align*}
$$

Because the right side of the inequality (2.7) is independent on t_{0} the convergence is uniformly on $\langle a, b\rangle$. Theorem holds.
Remark. As remark we conclude that in the case $\left|f^{\prime}(a)\right|=\left|f^{\prime}(b)\right|=0$, the convergence rate is $O\left(\varepsilon_{n}\right), \varepsilon_{n} \in J_{n}$, as follows from (2.7).

Acknowledgments

This research was supported by the Slovak Grant Agency, Ministry of Education of Slovak Republic under grant number 1/0068/08.

Conclusion

In our contribution, we determined a convergence rate of the solutions of a certain class of the singularly perturbed differential equations subject to Neumann boundary conditions to the solution of a reduced problem as a small parameter ε at highest derivative tends to zero.

References:

[1] Christopher K.R.T. JONES. Geometric Singular Perturbation Theory, C.I.M.E. Lectures, Montecatini Terme, June 1994, Lecture Notes in Mathematics 1609, Springer-Verlag, Heidelberg, 1995.
[2] VRÁBEL', R. Singularly perturbed semilinear Neumann problem with non-normally hyperbolic critical manifold. In E.J.Qualitative Theory of Diff. Equations, 2010, No. 9, pp. 1-11.
[3] VRÁBEL', R. Upper and lower solutions for singularly perturbed semilinear Neumann's problem. In Mathematica Bohemica, 122, 1997, No.2, pp.175-180.
[4] VRÁBEL', R. Three point boundary value problem for singularly perturbed semilinear differential equations. In E.J.Qualitative Theory of Diff. Equations, 2009, No.70, pp. 1-4.
[5] VRÁBEL, R. On the solutions of differential equation $\mathcal{\varepsilon}^{2}\left(a^{2}(t) y^{\prime}\right)^{\prime}+p(t) f(y)=0$ with arbitrarily large zero number. In Journal of Computational Analysis and Applications, 2004, Vol. 6, No. 2, pp. 139-146.
[6] VRÁBEL, R. Singularly pertubed anharmonic quartic potential oscillator problem. In Zeitschrift für angewandte Mathematik und Physik ZAMP, 2004, Vol. 55, pp. 720-724.
[7] VRÁBEL, R. Semilinear singular perturbation. In Nonlinear Analysis, TMA, 1995, Vol. 25, No. 1, pp. 17-26.
[8] VRÁBEL, R. Quasilinear and quadratic singularly perturbed periodic boundary value problem. In Archivum Mathematicum, 2000, Vol. 36, No.1, pp. 1-7.
[9] VRÁBEL, R. Quasilinear and quadratic singularly perturbed Neumann`s problem. In Mathematica Bohemica, 1998, Vol. 123, No. 4, pp. 405-410. [10] VRÁBEL, R. Upper and lower solutions for singularly perturbed semilinear neumann`s problem. In Mathematica Bohemica, 1997, Vol. 122, No 2, pp. 175-180.
[11] VRÁBEL', R. Asymptotic behavior of T-periodic solutions of singularly perturbed second-order differential equations. In Mathematica Bohemica, 1996, Vol. 121, No. 1, pp. 73-76.

Reviewers:

Pavel Híc, Assoc. Professor, PhD. - Department of Mathematics and Informatics, Faculty of Education, University in Trnava

Róbert Vrábel', Assoc. Professor, PhD. - Department of Mathematics, Institute of Applied Informatics, Automation and Mathematics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology Bratislava

[^0]: Ludmila Vaculíková, RNDr., Vladimír Liška, MSc. - Department of Mathematics, Institute of Applied Informatics, Automation and Mathematics, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology Bratislava, Hajdóczyho 1, 91724 Trnava, Slovak Republic, e-mail: ludmila.vaculikova@stuba.sk, vladimir.liska@stuba.sk

