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                                                                   Abstract 
 

We investigate the problem of existence and asymptotic behavior of solutions for the 
singularly perturbed linear Neumann problem 
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Our approach relies on the analysis of integral equation equivalent to the problem above. 
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Introduction 

 
In this paper, we will study the singularly perturbed linear problem 
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with Neumann boundary condition 
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We can view this equation as a mathematical model of the dynamical systems with       
high-speed feedback. The situation considered here is complicated by the fact that a 
characteristic equation of this differential equation has roots on the imaginary axis i.e. the 
system be not hyperbolic. For hyperbolic ones the dynamics close critical manifold is well-
known ( see e.g. [1], [3-10] ), but for the non-hyperbolic systems the problem of existence and 
asymptotic behaviour is open in general and leads to the substantial technical difficulties in 
nonlinear case [2]. The considerations below may be instructive for these ones. 

We prove, that there exist infinitely many sequences  { } +∞
= → 0,0 nnn εε  such that ( )ty
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converges uniformly to ( )tu  on ba,  where  εy is a solution of problem  (1.1), (1.2) and u is 
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where 0>λ  be arbitrarily small but fixed constant which guarantees the existence and 
uniqueness of the solutions of (1.1), (1.2). 
 
Example. Consider the linear problem 
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Hence, for every sequence { } nnnn J∈∞
= εε ,0  the solution of considered problem 
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The main result of this article is the following one. 
 

Main result 
 
Theorem.  For all ( )baCf ,3∈  and for every sequence { } nnnn J∈∞

= εε ,0  there exists a 

unique solution εy of problem (1.1) , (1.2) satisfying  
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More precisely, 

                                                ( ) ( ) ( ) .,baonOtuty nn
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Proof.  Firstly, we show that 
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is a solution of (1.1) , (1.2). Differentiating (2.1) twice, taking into consideration that 
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From (2.3) and (2.1) after a little algebraic arrangement, we get                                
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i.e. εy  is a solution of differential equation (1.1), and from (2.2) it is easy to verify that this 

solution satisfies (1.2). 
 
Let bat ,0 ∈  be arbitrary, but fixed. Denote by 1I  and 2I  the integrals 
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Integrating 1I  and 2I  by parts, we obtain 
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The integrals in (2.4) converge to zero for  .,, ∞→∈= nJnnn εεε           

  Indeed, with respect to assumption on   f ,  we may integrate by parts in (2.4). Thus,   
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Substituting (2.5) and (2.6) into (2.4), we obtain an a priori estimate of solutions of (1.1), 

(1.2) for all bat ,0 ∈   of the form 
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 Because the right side of the inequality (2.7) is independent on 0t   the convergence is 

uniformly on ba, . Theorem holds. 

Remark. As remark we conclude that in the case( ) ( ) 0=′=′ bfaf , the convergence rate is  

( ) ,, nnn JO ∈εε  as follows from (2.7).  
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Conclusion 

 
In our contribution, we determined a convergence rate of the solutions of a certain class of 

the singularly perturbed differential equations subject to Neumann boundary conditions to the 
solution of a reduced problem as a small parameter ε  at highest derivative tends to zero. 
 
References: 
 
[1] Christopher K.R.T. JONES. Geometric Singular Perturbation Theory,  C.I.M.E. Lectures, 

Montecatini Terme, June 1994, Lecture Notes in Mathematics 1609, Springer-Verlag, 
Heidelberg, 1995. 

[2] VRÁBEĽ, R. Singularly perturbed semilinear Neumann problem with non-normally hyperbolic 
critical manifold. In   E.J.Qualitative Theory of Diff. Equations, 2010, No. 9, pp. 1-11. 

[3] VRÁBEĽ, R. Upper and lower solutions for singularly perturbed semilinear Neumann’s 
problem. In Mathematica Bohemica, 122, 1997, No.2, pp.175-180.    

[4] VRÁBEĽ, R. Three point boundary value problem for singularly perturbed semilinear 
differential equations. In  E.J.Qualitative Theory of Diff. Equations, 2009, No.70, pp. 1-4. 

[5] VRÁBEĽ, R. On the solutions of differential equation ( )( ) ( ) ( ) 022 =+′′ yftpytaε  with 
arbitrarily large zero number. In Journal of Computational Analysis and Applications, 2004, 
Vol. 6, No. 2, pp. 139-146. 

[6] VRÁBEĽ, R. Singularly pertubed anharmonic quartic potential oscillator problem. In Zeitschrift 
für angewandte Mathematik und Physik ZAMP, 2004, Vol. 55,  pp. 720-724.  

[7] VRÁBEĽ, R.  Semilinear singular perturbation. In Nonlinear Analysis, TMA, 1995, Vol. 25,  
No. 1, pp. 17-26. 

[8] VRÁBEĽ, R. Quasilinear and quadratic singularly perturbed periodic boundary value problem. 
In Archivum Mathematicum,  2000, Vol. 36, No.1, pp. 1-7. 

[9] VRÁBEĽ, R. Quasilinear and quadratic singularly perturbed Neumann`s problem.                                     
In  Mathematica Bohemica,  1998, Vol. 123, No. 4, pp. 405-410. 

[10] VRÁBEĽ, R. Upper and lower solutions for singularly perturbed semilinear neumann`s problem. 
In Mathematica Bohemica, 1997, Vol. 122, No 2, pp. 175-180. 

[11] VRÁBEĽ, R. Asymptotic behavior of T-periodic solutions of singularly perturbed second-order 
differential equations. In  Mathematica Bohemica, 1996, Vol. 121, No. 1, pp. 73-76. 

  
Reviewers: 
 
Pavel Híc, Assoc. Professor, PhD. - Department of Mathematics and Informatics, Faculty of 
Education, University in Trnava 

Róbert Vrábeľ, Assoc. Professor, PhD. - Department of Mathematics, Institute of Applied 
Informatics, Automation and Mathematics, Faculty of Materials Science and Technology                
in Trnava, Slovak University of Technology Bratislava 
 


