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Abstract 

 

The article deals with the control of oscillations in a specific type of second-order 

differential equations. The purpose of the research is to prove the possibility of oscillation 

frequency control based on a change in the value of a singular perturbation parameter placed 

into a mathematical model of a nonlinear dynamical system at the highest derivative. The 

oscillation frequency change caused by a different value of the parameter is verified by 

numerically modelling the system. 
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Introduction 

 

Control of oscillations has recently received a great deal of interest resulting from the 

associated practical and academic interests. Occurrence of oscillations, encompassed in a wide 

range of interesting phenomena from the areas of mechanics, mechanical engineering, 

chemistry, biology, medicine, economics and others makes their control an interesting research 

question (see e.g. (1, 2, 5) and the references therein).  

The problem of accurate prediction and control of oscillations in a wide range of 

differential equations has not been satisfactorily solved yet, though extensive foundations have 

been laid, e.g. in (2, 3) and (5).  

In (2), the question of oscillation pattern control for the dynamical systems with the 

multiarmed pitchfork bifurcation was studied and numerically verified, referring to numerous 
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papers dealing with the issue from various approaches, providing a novelty method lying in its 

straightforward extension to both continuous and discrete nonlinear models  with time-delay. 

The authors in (3) studied dynamics of the forced singularly perturbed differential equation 

of Duffing’s type, building on the same equation type as herein later. A new method of 

analysing the nonlinear oscillations based on the dynamic change of coordinates was 

elaborated.  

Similarly, the dynamics of the forced singularly perturbed differential equations of 

Duffing’s type with a potential bounded from above in the presence of a saddle-centre 

bifurcation was studied in (5). The authors showed that the frequency can be controlled by a 

small parameter at the highest derivative, as well.  

 

Methods and materials 

 

As stated in (2, 7), there are two main objectives regarding the oscillation control: 

(a) To obtain an asymptotically stable zero solution attracting all initial conditions in a suitably 

large region (regulator problem). 

(b) To obtain an asymptotically stable periodic solution with desired properties (such as 

oscillations at the given amplitudes and frequencies), and attracting all initial states in a 

suitably large region (oscillator problem). 

  

Based on the research of Vrábeľ et al. (2), we focused our attention on the proof of the 

existence and the possibility of control of nonlinear oscillations in the dynamical system 

described as 

 

𝜀2𝑦′′ + 𝑓(𝑡, 𝑦) = 0                 [1] 

 

𝑦(−𝛿) = 𝑦0    𝑦′(−𝛿) = 𝑦1     [2] 

 

where 𝑦0, 𝑦1 are the initial conditions, 𝑦𝜀(. , 𝑦0, 𝑦1) is a direct output, 𝑡 is time, 𝑓(𝑡, 𝑦) is a 

function described as [8],  𝜀 is a singular perturbation parameter, 0 < 𝜀 ≪ 1 and 𝛿 > 0. 

A background for modelling the oscillations is provided in the theory of singular 

perturbations. If the equation [1] is rewritten into a system of three first-order equations, the 

following system is obtained 

𝜀𝑦′ = 𝑤 
 

𝜀𝑤′ = −𝑓(𝑡, 𝑦)     [3] 

 

𝑡′ = 1 
 

𝑦(−𝛿) = 𝑦0  𝑤(−𝛿) = 𝜀𝑦1          [4] 

 

Applying the limit𝜀 → 0+, the system [3] is reduced to an algebraic-differential reduced system 

of the form 

0 = 𝑤 
 

0 = −𝑓(𝑡, 𝑦)      [5] 

 

𝑡′ = 1 
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In the next step, the substitution 𝜏 =
𝑡

𝜀
 is introduced, transforming the system [3] to the system 

 
𝜕𝑦

𝜕𝜏
= 𝑤 

 
𝜕𝑤

𝜕𝜏
 = −𝑓(𝑡, 𝑦)       [6] 

 
𝜕𝑡

𝜕𝜏
= 𝜀 

 

Applying the limit 𝜀 → 0+, the system [6] is reduced to the associated system with 𝑡 playing 

the role of a parameter 

  
𝜕𝑦

𝜕𝜏
= 𝑤 

 

 
𝜕𝑦

𝜕𝜏
 = −𝑓(𝑡, 𝑦)     [7] 

 
𝜕𝑡

𝜕𝜏
= 0 

 

As, regarding the level of phase space structure, both systems agree when 𝜀 ≠ 0, but differ 

significantly in the limit when 𝜀 = 0, the methodical base for applying the singular perturbation 

theory is provided, since the main goal of this theory is to understand the structure in the full 

system when 𝜀 ≠ 0 (4). 

 

Results 

 

As an example, let us consider the oscillations in the dynamical system described as [1] 

and [2], where 𝑓(𝑡, 𝑦) has the form:  

 

𝑓(𝑡, 𝑦) = {
     𝑦3                                                                for 𝑡 ∈ 〈−𝛿, 0〉

 
(𝑦 − (𝑒𝑡 − 1))𝑦(𝑦 + (𝑒𝑡 − 1))            for 𝑡 ∈ 〈0, ∞〉

   [8]  

 

 𝜀 is a singular perturbation parameter, 𝜀 → 0+, 𝑡 is time and 𝛿 > 0.  The symmetric manifold 

representing  𝑓(𝑡, 𝑦) = 0 is depicted in Figure 1. 
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Fig. 1 Symmetric manifold 𝑓(𝑡, 𝑦) = 0 

 

Under varying the singular perturbation parameter 𝜀, the graph of the studied equation 

differs significantly. It is necessary to point out, that these oscillations are very sensitive to the 

value of the singular perturbation parameter𝜀, as it comes out from the following figures. When 

comparing Figure 2 with Figure 3, the difference in the parameter 𝜀 is on the fifth decimal place; 

hence the oscillations are extremely different. Secondly, the analysis of Figure 4 shows that the 

frequency of the oscillations falls with the rising value of the singular perturbation parameter 

𝜀. 

 
Fig. 2 Numerical solution of 𝜀2𝑦′′ + 𝑓(𝑡, 𝑦) = 0, 𝑦(−𝛿) = 𝑦0, 𝑦′(−𝛿) = 𝑦1, 𝑦0 = 1.2, 𝑦1 =

0, 𝛿 = 0.1, 𝑇 = 1.8, 𝜀 = 0.00612 

 
Fig. 3 Numerical solution of 𝜀2𝑦′′ + 𝑓(𝑡, 𝑦) = 0, 𝑦(−𝛿) = 𝑦0, 𝑦′(−𝛿) = 𝑦1, 𝑦0 = 1.2, 𝑦1 =

0, 𝛿 = 0.1, 𝑇 = 1.8, 𝜀 = 0.00613 



                                  

61 

 

  
(a)                                                               (b) 

 

Fig. 4 Numerical solution of 𝜀2𝑦′′ + 𝑓(𝑡, 𝑦) = 0, 𝑦(−𝛿) = 𝑦0, 𝑦′(−𝛿) = 𝑦1, 𝑦0 = 1.2, 𝑦1 =
0, 𝛿 = 0.1, 𝑇 = 1.8, 𝜀 = 0.05 (a), 𝜀 = 0.09 (b) 

 

The data for figures has been worked out by using MATLAB computer system (6). The source 

code is available from the authors upon request. 

 

Discussion 

 

The numerical results confirm that different oscillation frequency can be achieved as a 

result of the change in the singular perturbation parameter 𝜀 at the highest derivative. When 

comparing Figure 2 with Figure 3, it is obvious, that the oscillations differ significantly, 

although there is only a minor change in the parameter ε . It is as well obvious, that the 

frequency of the oscillations is inversely proportional to the value of the singular perturbation 

parameter 𝜀. 

 

Conclusion 

 

We demonstrated the possibility of oscillations control based on a small fitting parameter 

placed into a mathematical model of a nonlinear dynamical system. The results were modelled 

using MATLAB software. However, in order to obtain the oscillations with specific properties, 

it is necessary not only to deeply understand each individual system, but also to identify and 

meet particular system-behaviour requirements. The future research will be therefore oriented 

on altering properly the initial conditions as well as the value of the singular perturbation 

parameter.   
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