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Abstract 

 

We deal with static prearranged couples in practice quite often. Constructers are using 

them a lot to improve rigidity of product. Some examples are mentioned in this article. The 

paper also discusses the models of kinematic couples in plane and models of kinematic couples 

in space. Spatial movable and non-movable couples are commented on as well. The article 

particularly focuses on application of statics in the assembly in spatial couples (movable, non-

movable) for intentional allowance fix which leads to a non-problem assembly. With fix like 

this, it is possible to manufacture selected parts in series while assuring non-problem assembly. 
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INTRODUCTION 

 

Aim of this paper is application of statics in the assembly, especially in spatial couples for 

intentional allowance fix which leads to non-problem assembly. Dealing with static prearranged 

couples is common in real life.  

 

STATICS IN ASSEMBLY 

 

Each designer knows that assembled structures can be analysed either as planar (if the 

thickness of the members are negligible, as if they were made of a metal sheet) or spatial. 

Textbooks of statics offer the so called Grübler’s equations for both groups to calculate the 

number of degrees of freedom (Σk) of a couple or a multi-structure (1, 2). 
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Typical example where constructers use static prearranged couples can be ball bearing 

which should have theoretically three balls in maximum capacity. However, each bearing 

contains more balls because of the mentioned rigidity improvement. 

Grübler’s equations can be used for example for creation of multi-DOF closed kinematic 

chains, where one of the links is stopped and total DOF of such system becomes one (10). 

Another example can be solution to the structural synthesis problem in the design of 

manipulators (11). 

 Couples in the textbooks are drawn in their structural design. More accurate, however, 

would be just drawing a point model instead of the real one (Figs. 1 and 2). 

Statics in fact address the balance of forces in the models where reactions act in single 

points (3).  

To detect static properties of the examined structure, the latter will be divided into the 

following groups: 

 

1. Plane: These are the structures made of the members so thin that their 

thickness can be neglected (Fig. 1), or their thickness is real, but the 

members are symmetrically distributed on the functional plane. 

  

2. Space: They are characterised by the fact that all moving members perform 

general spatial movements (Fig. 2). 

 

Using statics, the reactions can be investigated between the rotating circle (pin) and prism 

into which it is inserted (two reactions). The reactions can also be examined between the ball 

and the inside of a triangular pyramid (ball pin) as shown in Figure 2 line 3.  
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Fig. 1 Models of kinematic couples in a plane,  

where: Σk – number of degrees of freedom  
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Fig. 2 Models of kinematic couples in space, where: Σk - number of degrees of freedom 

 

The necessity to display couples using their point models should be underlined; otherwise, 

the well-known Grübler’s equations could be misleading. 
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Example 1: In order to calculate ir for the structure in Figure 3.  
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Fig. 3 Plane mechanism 

 

According to Grübler, the equation gets the following shape (3): 

 

ir = 3n – 3 – 2.r – 2.p – 1.o   [–]                                                                                         [1] 

 ir = 3n – 3 – r.2,  i.e.  ir = 3.5 – 3 – 5.2 = 2  [–] ,    

    

where: ir – number of degrees of freedom in the plane [–], 

         n – number of members  [–], 

         r – number of rotational couples  [–], 

         p – number of sliding couples  [–], 

         o – number of general (one-point) couples  [–].   

 

It is obvious that it is a planar mechanism where ir = 1. Grübler does not consider the 

structures which contain rotating members (member 2). In such case, it is necessary to deduce 

the number of members with their own rotation (Σr) from the calculated ir. The example 

illustrates one own rotation representing one degree of freedom, which is not, however, 

manifested in the behaviour of the structure as a whole. 

In the current monograph, the author used the equations derived by Valentovič (4).  

A prerequisite for the calculation of ir is drafting a point model with reactions in single 

points. 

The equation of Valentovič for the plane takes the following shape:   

 

ir = 3n – 3 – Σk – Σr   [–] ,                                                                                                     [2] 

 

where:   n   – number of members [–], 

         Σk  – number of contact points in a given model [–], 

         Σr  – number of members rotating in themselves [–]. 

 

The procedure is similar in the case of space. Figure 2 shows the models of selected spatial 

couples with marked discrete points of contact. 

The equation for space takes the form (4): 

    

ip = 6n – 6 – Σk – Σr     [–] .                                                                                                 [3] 

 

Example 2: According to Grübler, the crank mechanism has one degree of freedom, 

because it is considered a planar mechanism with the members of zero thickness. Members of 

a real crank mechanism move in several parallel planes. Such structures are spatial (Fig. 4); 

they must be therefore investigated by the Valentovič equations for space:  

  

ip = 6.4 – 6 – (3.5.1.5) – 0 = – 2  (!)  [–] ,                                  
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ip = +1 was anticipated by the author. The structure in space is, however, redetermined three 

times (+1) - (-2) = 3. Our experience confirms that when closing such structure, e.g. for bonding 

a connecting rod with a crosshead, it is necessary to extend the gap between the pin and the 

hole. 

1
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Fig. 4 The crank mechanism is considered a system with one degree of freedom  

(ip =1). A detailed analysis shows ip = -2. The structure is considered spatial 

 

Redundant degrees of freedom can be eliminated for example by replacing three rotating 

couples (k = 5) by rotary - sliding couples (k = 4). 

The equation to calculate the number of degrees of freedom of each structure is [3], based 

on the spatial model, since planar structures do not exist in practice. 

The number of degrees of freedom depends on the purpose of the structure. The differential 

should have ip = 2, mechanism should have ip = 1 and unmovable structure ip = 0. 

The structures assembled in a trouble-free way are: 

ip ≥ 0.  

The structures assembled in a troublesome way are: 

ip <0. 

The difference between the anticipated ip and calculated ip is called the degree of 

redetermined structure. The higher the degree of redetermined structure, the more complex the 

calculation of the gaps necessary to ensure trouble-free assembly is. 

The structure is statically redetermined if the number of degrees of freedom (ip) calculated 

from the equation [3] is smaller than anticipated (ip = 0 is anticipated for an unmovable 

structure, ip = 1 for mechanisms and ip = 2 for differentials). 

If the structure is redetermined, its expected function will only be achieved by a suitable 

toleration treatment which is dealt by in the theory of strings (5, 6). 

Frequently, neither the expected result of the equation [3] can guarantee a smooth 

assembly. 

Statics, as presented in textbooks, are not suitable for the purposes of this paper due to the 

principal shortcomings identified (3).  

This paper is thus also a contribution to the development of statics. 

Grübler’s equations are considered crucial for statics, despite their shortcomings. They 

should be, however, replaced by Valentovič’s equations applied in this paper (7, 4). 
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SPATIAL MOVABLE AND UNMOVABLE COUPLES 

 

Basic structures are couples or bonds of two bodies. Figure 5 gives a basic overview of the 

couples used in engineering: a ball joint, a rotary sliding couple, a rotary couple, a sliding couple 

A, a sliding couple B and a screw couple. 

Professor Whitney who also deals with this issue uses the real shapes of bodies to show the 

couples, which are not compatible with the theory of statics (8).  

The author agrees with Professor Valentovič who promotes the use of spherical models 

that are compatible with statics, unlike photo images and drawings showing engineering 

couples and structures (7, 4).  

Advantages of such an approach are its transparency and closeness to the language of 

“statics engineers”. 

Figure 5 shows the schemes of couples in a shape of spherical models, and their symbols 

used in drawing the whole structure in order to avoid making it laboriously of spherical models. 

The principle of a spherical model is that bodies, in accordance with statics, are perceived 

as perfect solids touching not in planes but in single points. 

Figure 5 shows that a ball joint in a ball bed, drawn as a ball model is a three-point model 

(touching the other body at three points), the rotary sliding couple is a four-point model, the 

rotary couple is a rotary sliding model prevented in the movement (feed), i.e. a five-point model, 

and the sliding couple A and B as well as the screw couple are five-point models. The spherical 

models are accompanied by symbols. 

Such couples are correct and can be easily assembled when made according to the spherical 

models. However, the couples may be also incorrect, and special attention should be paid to the 

couples of gears which are generally considered as rolling. This is not true however, since if 

one tooth of a wheel engages the notched wheel gap of the other wheel according to the scheme 

(Fig. 6d) at a given axial distance, the notched tooth gap touches only one point.  The tooth will 

touch two points only if the wheel is released and pushed into the other wheel (Fig. 6e). 

Special attention should be paid to this phenomenon because of a generally accepted 

misconception that the gears always form a single-point (i.e. rolling) couple. 
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Fig. 5 Basic space movable non-singular couples.   

Proposal for standardisation of signs. 
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Fig. 6 Movable rolling couples (a, b, c) and tooth couples (d, e) 

 

In the case of rolling couples, it is important to distinguish whether a ball rolls on a plane 

(Fig. 6a), a prism rolls on a plane (Fig. 6b) or balls roll in a V-groove (Fig. 6c). It is quite 

obvious that in each case there is a different number of contact points (9). 

 

CONCLUSION 

 

Statics in the form as we can see in the textbooks is not usable for the purposes of assembly. 

Reasons are principal shortcomings which were mentioned above (3).  

This article also contributes to the progress and development in statics.  

Grübler’s equations are the key equations of statics. Yet, they have some limitations and 

they should be, therefore, replaced by Valentovič’s equations since the latter suit better for the 

purposes discussed in this paper (7, 4).  

Usage of ball models which are compatible with statics, in contrast to photographic pictures 

and drawings for displaying mechanical couples and structures, is the right idea (8).   

This approach is better because of compatibility with the statics theory. 

Principle of a ball model is based on the fact that, in conformity with statics, objects are 

perceived as perfectly rigid. That is the reason why objects are joined in isolated points and not 

surfaces. These types of couples are correct and they can be assembled with no problems when 

they are made according to the ball models. 
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