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Abstract 

 

This contribution is focused on determining the material properties (Young modulus and 

shear modulus) of the testing samples. The theoretical basis for determining material properties 

are the knowledge of linear elasticity and strength. The starting points are dependencies among 

the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains 

of the testing samples were obtained by measuring predefined load conditions using a strain-

gauge bridge and the universal measurement system Quantum X MX 840. The integration of 

these tasks into the teaching process enhances practical and intellectual skills of students at 

secondary level technical universities. 
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INTRODUCTION 

 

Both the Young modulus and shear modulus are determined experimentally. The selection 

of the method depends on the type of load (static, dynamic), on the geometry of test samples 

and also on the characteristics of the investigated material, which we need to identify.  

A Stress - Strain diagram may be used to determine the Young modulus by tensile test. In 

this case, samples of circular cross sections are used (1). The method of holographic 

interferometry can be applied to determine the Young modulus for samples of irregular shape 

(2). It is also possible to use e.g. the pulse method for determining the resonance frequency (3). 

Except from the previous method, the shear modulus can be determined also by the torsional 

pendulum method (4). 

This article describes the determination of the Young modulus on the basis of a bending 

rod with rectangular cross-section. A rod with a circular cross-section loaded by torque was 
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used for the determination of the shear modulus. In both cases, strains of samples were 

measured by strain-gauges. 

 

THEORETICAL BACKGROUND 

 

Young modulus is defined by Hooke`s law (5): 

𝐸 =
𝜎

𝜀
 ,    [1] 

where E [Pa] is the Young modulus,  [Pa] is the tensile (normal) stress,  [-] is the relative 

strain. 

The rod, fixed on one side and loaded by the force on the other side is shown in Fig. 1. The 

normal stress max has the maximum value at the ends of the fiber of the cross-section (Fig. 2):  

𝜎max =
𝑀0(𝑥)

𝐽𝑧
𝑦max =

𝑀0(𝑥)

𝑊0
=

𝑥 𝐹

𝑊0
 ,    [2] 

where Jz [m
4] is the second moment of area, W0 [m

3] is the section modulus in the bending, 

M0(x) [Nm] is the bending moment, F [N] is the loading force, x [m] is the distance from the 

unbridled end of the rod. 

For a rectangular cross-section, the following equations should be applied 

  𝐽𝑧 =
𝑏 ℎ3

12
, 𝑦max =

ℎ

2
   and 𝑊0 =

𝐽𝑧

𝑦max
=

𝑏 ℎ2

6
. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Loading and fixing of the testing rod a) undeformed shape; b) deformed shape 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 The normal and shear stress diagrams in any rectangular cross-section of a rod 

 

When the rod is under simple bending, the shear stress is equal to zero in the edge fibers 

of the cross-section. If the angle strain equals to zero in the cross-section, only relative strain 

appears there. The magnitude of relative strain changes as section height does. The greatest 
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prolongation (+) and the greatest shortening (-)  appears in extreme fibers respectively, where 

the greatest normal stress is observed (6). If we are able to measure the relative strain, we will 

calculate the modulus of elasticity E on the base of the relationships [1] and [2] 

𝐸 =
𝜎max

𝜀
=

𝐹∙𝑥

𝑏∙ℎ2

6
∙𝜀

=
6𝐹

𝑏∙ℎ2

𝑥

𝜀
 .     [3] 

The value of the shear modulus G was determined on the basis of stress in rods with a 

circular cross-section under torsion moment (Fig. 3a). In practice, solid bodies with circular 

(hollow circular) cross-section are quite often used in the case of twisting moment loading. If 

the rod is loaded by a simple twist, the individual cross-sections of the rod are stressed by shear 

stress. The maximum shear stress is at the edge fibers of the cross-section (Fig. 3b) and it is 

given by (7) 

𝜏max = 𝜌max
𝑀𝑘

𝐽𝑝
=

𝑀𝑘
𝐽𝑝

𝜌max

=
𝑀𝑘
𝐽𝑝

𝑟

=
𝑀𝑘

𝑊𝑘
 ,     [4] 

where  [m] is the distance between the fiber and the axis of  cross-section of the shaft ( max 
=r), r [m] is the radius of the circular cross-section, Mk [Nm] is the torsion moment, Jp [m

4] 

is the polar moment of inertia of the cross-section, Wk [m
3] is the torsional modulus in the cross-

section. 

For circular cross-section:   𝐽𝑝 =
𝜋 𝑑4

32
, 𝑑 = 2𝑟   and 𝑊𝑘 =

𝜋 𝑑3

16
. 

 

 

 

 

 

 

 

a)                         b) 

Fig. 3 The rod of the circular cross-section loaded by simple torsion moment 

a) fixing and loading of the rod (shaft) 

b) the shear stresses diagram in any circular cross-section of the rod (shaft) 
 

On the basis of the equations of general Hooke's law for planar stresses and considering 

the pure shear (Fig. 4) we get (8) 

𝜏max = |𝜎1| = |𝜎2| = +
𝐸𝜀

1+𝜇
 ,     [5] 

where  1,  2 [Pa] are the principal stresses  ( 2 = -  1), E [Pa] is the Young modulus,  [-] is 

the Poisson` ratio,  1,  2 [-] are the principal strains (   1,  2 = -  1). 
 

 

 

 

 

 

 

Fig. 4 Stresses by pure shear loading 
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The shear modulus is (6): 

𝐺 =
𝐸

2(1+𝜇)
 ,    [6] 

respectively by modifying the equations [4 - 6] we get: 

𝐺 =
𝜏max

2𝜀
=

𝑀𝑘
𝑊𝑘

2𝜀
.    [7] 

 

THE STRAIN-GAUGE MEASUREMENT OF RELATIVE STRAINS 

 

Figure 5a shows the schemas of the measuring apparatuses applied for determination of the 

dependence of the relative strains on the applied load. In both cases, one end of the bar was 

rigidly attached to the metal frame. Loading force was created by the weight of a known mass. 

The ballast was hanged at the free end of the bar when loading under bending. When loading 

by torsion moment, the ballast was hanged on the arm as illustrated in Fig. 5b. Strain-gauges 

were standardly glued to the surface of the test samples. 

At loading under bending: Strain gauges were glued to the surface of the sample (one to 

the upside and second to the underside of the rod) at a distance l from the free end. The axes of 

strain gauges were parallel to the longitudinal axis of the rod. In this case, measuring strain 

gauges were loaded by maximum normal stress and they were able to record the relative strains 

on the surface of the rod. 

Strain-gauges cross with two perpendicular axes were used in case of the sample loaded 

under twist. Strain-gauges sensors were attached to the surface of the test samples so that axes 

of the strain-gauges and the longitudinal axis of the sample form the angles of 45° and 135°. In 

this case, measuring strain-gauges were stressed with pure shear (Fig. 4). The axes of the strain-

gauges were consistent with the directions of the axes of the principal stresses and they were 

able to record the principal relative strains. 

Relative change in resistance is recorded by the strain gauges. This change is directly 

proportional to the relative change of the active  length of strain-gauges 

∆𝑅

𝑅
= 𝑘

∆𝑙

𝑙
= 𝑘𝜀     [8] 

where R [] is the resistance change of strain-gauge, R [] is the resistance of the strain-

gauge before deformation, k [-] is the gauge factor (given by the manufacturer), l [m] is the 

change of the active length of the strain gauge, l [m] is the active length of the strain gauge,  

is the relative strain.  
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a)  b)  

 strain-gauges   universal measurement system Quantum X MX 840 

   control computer 

 

Fig. 5 The scheme and photos of measurement apparatus 

a) The sample loaded under bending 

b) The sample loaded under twist 

 

Values of resistance, which  are mentioned to be recorded by strain-gauge sensor, achieved 

values of order from 10-4  to 100 .  Therefore, involvement of the strain gauges in the 

Wheatstone bridge is used. The equation that can be used in practice to determine the strain has 

the form (9): 

∆𝑈0

𝑈𝑛
=

1

4
(

∆𝑅1

𝑅1
−

∆𝑅2

𝑅2
+

∆𝑅3

𝑅3
−

∆𝑅4

𝑅4
) =

1

4
𝑘(𝜀1 − 𝜀2 + 𝜀3 − 𝜀4),    [9] 

where k  is the gauge factor,  i are the individual relative strains, Ri  are the individual resistance,  

U0 [V] is change of the output voltage, Un [V] is the driving voltage. 

Two strain gauges were involved in a half bridge in these measurements. This means, the 

resistors R1 and R2 were replaced by measuring strain gauges in the Wheatstone bridge. Thus, 

for a relative strains, the following applies: 𝜀1 = −𝜀2  ≠ 0 a 𝜀3 = 𝜀4 = 0. Substituting these 

values into [9] we get 

∆𝑈0

𝑈𝑛
=

1

4
𝑘(𝜀1 − 𝜀2) = 2

1

4
𝑘𝜀1. [10] 

Connection of the sensors with a measuring system was performed using Ethernet cables. 

The HBM Catman Easy program (10) was used to record data, manage the measurement system 

and to process the obtained data. 

 

DETERMINATION OF THE VALUES OF YOUNG MODULUS AND SHEAR 

MODULUS 

 

Table 1 shows the measured values of the parameters necessary to determine the Young 

modulus (Eq. 3, Fig. 5a) and used in the tests. 

Strain-gauge transducers 6JP with an ohmic value of 117 Ω and with the gauge factor k = 

2.01 were used to measure relative strains. Six measurements were performed using the 

measurement system QuantumX MX840 [10]. These measurements determined the final value 

of 1 = 0.00020517 m.m1. All measured values were substituted into the relationship [3]: 

𝐸 =
6𝐹

𝑏∙ℎ2

𝑙

𝜀
= 2.088 ∙ 1011Pa = 2.088 ∙ 105 MPa. 
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Table 1 Values of the parameters for the determination of Young modulus 

F = 1660.54 103 N magnitude of the loading force  F (F = mg; g = 9.81 m s2) 

m = 169.27 103 kg  the mass weight 

b = 19.55 103 m width of the cross-section of the sample 

h = 1.75 103 m thickness of the cross-section of the sample 

l = 257.50 103 m distance between the strain-gauges and the line of the force 

Torque (Mk) was triggered by weights of different masses (m) which were strapped to the 

end of the arm of the length (l0): 

𝑀𝑘 = 𝐹 ∙ 𝑙0 = 𝑚 ∙ 𝑔 ∙ 𝑙0.   [11] 

Table 2 summarizes the measured and the calculated values of the parameters which are 

necessary to determine the shear modulus (Eq. 7, Fig. 5b) and which were used in the tests. 

Table 2 Parameters of the bar with circular cross-section  

l0 = 0.5 m length of the arm 

d = 16.18  103 m diameter of the test bar 

Wk = 831.7 109  m3 torsional modulus  

Strain gauge transducers KM 120 with an ohmic value of 120 Ω and with the gauge factor 

2.06 were used for measurement. Table 3 shows the values of the relative strains for the 

individual loading torsional moments obtained using the measurement system QuantumX 

MX840. There are also calculated values of the shear modulus for the individual relative strains 

on the base of relations [7] and [11] in the table. 

Table 3 Values of the parameters for the determination of shear modulus 

m 103 [kg] Mk 103 [Nm]   [ ] G 
 [Pa] 

998.83 4899.26 3.46 85 199.00 

2037.63 9994.58 7.05 85 203.09 

3076.57 15090.58 10.65 85 152.31 

4105.02 20135.12 14.20 85 269.08 

5143.96 25231.12 17.95 84 484.82 

6178.91 30307.55 21.34 85 400.72 

7217.62 35402.43 25.06 84 925.46 

 

The final value of the shear modulus was determined by the average of the measured 

values. Determining of the value of the uncertainty on the shear modulus (𝛿𝐺) was determined 

by the relationship: 

𝛿𝐺 = √
∑(𝐺𝑖−𝐺̅)2

𝑛(𝑛−1)
 ,  [12] 

where 𝐺̅ is the mean value of the measured values, n is the number of measurement, Gi is the 

size G in the ith measurement. 

We obtained the following values of shear modulus 𝐺 = (85 090.64 ± 114.48) ∙ 106Pa. The 

relative error is 0.14 %. 
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CONCLUSION 

 

This contribution deals with determination of the modulus of elasticity for a sample with 

rectangular cross-section and shear modulus for rods with circular cross-sections. Each method 

used should be classified as static methods. Relative strains were detected experimentally for 

the given load force (bending) and for the individual values of the loading torque (twist). Values 

of modulus were calculated by relations of the elementary elasticity and values obtained by 

measurements. Tenzometric sensors connected to the half bridge and universal measurement 

system QuantumX MX840 were used to experimentally obtain the values of relative 

deformations.  

The supplier of the test sample declared that the magnitude of the modulus of elasticity is 

2.11011 Pa. The value determined for the Young modulus by test was 2.088.1011 Pa. The 

relative error of determining the Young modulus applying this method was 0.57 %. The 

mechanical table declares the value of the modulus of elasticity for steel within the range (1.9 

to 2.15)1011 Pa.  

For a steel sample with circular cross-section we obtained the value of the shear modulus 

85 090.64 MPa with the relative error of 0.14 %. According to the standards, steel has the value 

of the shear modulus within the range of 80 000 MPa to 85 0000 MPa. In both cases, the 

obtained values are sufficiently accurate. So it can be concluded that the applied method is 

suitable to include into the teaching process at technical universities. Thus, the students should 

have the opportunity to see the link between theory and practice. 
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