
93 
 

RESEARCH PAPERS 
FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA 

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA 

 

2016                                                                                                         Volume 24, Number 39 

 

 

DYNAMIC STABILITY OF GENERALIZED BECK-REUT`S BEAM  

 

Tibor NÁNÁSI 

 
SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA,  

FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA,  

INSTITUTE OF APPLIED INFORMATICS, AUTOMATION AND MECHATRONICS,  

ULICA JÁNA BOTTU 2781/25, 917 24 TRNAVA, SLOVAK REPUBLIC 

e-mail: tibor.nanasi@stuba.sk 

 

 

Abstract  

 

The classical non-conservative Beck`s beam, loaded by follower compressive force, is 

generalized by allowing an arbitrary angle of action of the follower force as well as allowing 

for excentric positioning of the applied force. For the corresponding boundary eigenvalue 

problem, the frequency equation is derived. Results of parametric studies are presented with 

an emphasis laid on the lowest eigenfrequencies. The characteristic shape of the computed 

curves indicates whether stability loss by divergence or by flutter occurs. A map of stability is 

presented in terms of parameters describing the excentricity and the angle under which the 

follower force acts on the beam. 
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INTRODUCTION  

 

The Beck`s beam is a classic example of a relatively simple non-conservative system. 

Transverse vibrations of slender beams is a well-understood object, conservative axial end loads 

can lead to buckling, while follower forces can introduce flutter as a typical phenomenon in 

non-conservative systems. The classical introduction to engineering theory of non-conservative 

systems is the well-known Bolotin`s monography (1), and mathematical theory detailed in 

Leipholz`s monography (2). An extensive critical overview based on hundreds of papers has 

been presented by Elishakoff (3). Koiter (4) questioned the usefulness of the study of follower 

forces due to a lack of their industrial applications, her paper provoked a series of responses (5-

6, 3). To conduct a study of follower forces in a laboratory is a quite challenging task (7), one 

of the few implementations of follower forces uses reactive forces at the tip of the beam or fluid 

stream ejected from a nozzle attached to the free end of the beam. However, follower forces 

can be easily implemented in MEMS and, as stated (8), provide performance enhancement of 

certain MEMS devices. Frequency tuning of a microscale cantilever beam has applications in 
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such modern applications, including atomic force microscopes and high density data storage 

devices (9). 

The cantilever beam loaded by a compressive force P of constant magnitude gives rise to 

different types of behavior depending on the way the load interacts with the beam structure. 

The most common case is given by the “dead” load, see Fig. 1a, when the direction of the 

compressive force maintains its orientation regardless of the beam deflections. Gravitational 

forces are a typical example, the corresponding boundary problem is self adjoint and as far as 

the elastic stability is concerned, the Euler`s classical approach gives satisfactory results. In 

other words, the static criterion of stability can be used. Beck`s beam is a cantilever loaded by 

a compressive force oriented in a direction tangential to the deflection curve, Fig. 1b. This type 

of load is labeled as a follower force. Beck`s beam is a non-conservative system. To assess its 

stability the dynamic criterion of stability is required in which inertia effects are included. The 

loss of stability in the case of a conservative dead load corresponds to divergence, while under  

 

 

Fig. 1 Different types of behavior of the compressive force: a – dead load,                                      

b – Beck`s column, c – Reut`s column, d – generalized Beck-Reut`s column 

 

the follower force, the mechanism of stability loss may result in flutter – i.e., vibration with 

increasing amplitude. An attractive feature of the Beck`s column is the fact, that the theoretical 

critical compressive force is more than eight times higher than the critical force in the 

conservative case. Reut`s column arises when the compressive force maintains both the 

direction and the line of action, Fig. 1c. A platform at the beam tip is required to keep its 

interaction with the deflecting beam. Here due to the excentricity  additional moment acts at 

the beam end. This case is also non-conservative, moreover, in mathematical terms the Reut`s 

column is adjoint to the Beck`s column and as such has the same critical loads as the Beck`s 

column. Generalization of the above mentioned three beams can be obtained if we allow a sub 

tangential compressive force together with partial excentricity as illustrated in Fig. 1d. The aim 

of this paper is to study the influence of the angular declination  and of the excentricity  on 

the lowest eigencurves and to draw conclusions on possible transition from divergence 

mechanism to flutter mechanism of stability loss.  
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GOVERNING EQUATIONS  

 

We consider a straight slender elastic prismatic clamped beam loaded at its end by a 

compressive force P of constant magnitude P. The directional features of the behavior of the 

load vector with respect to the deflecting beam are specified via the boundary conditions. The 

governing equation for a constant cross-section and for harmonic vibration in a single plain is:  

 )()()( 2)2()4( xyxyxy   , [1] 

where y(x) is the non-dimensional flexural deflection, =Pl2/EJ is the constant non-

dimensional magnitude of the compressive force and 2=2m/EJ is the non-dimensional 

frequency with  standing for circular frequency.  The boundary conditions corresponding to 

the generalized case according to Fig. 1d are: 

                           ,0)1()1(,0)1()1(,0)0(,0)0( )2()1()3()1(  yyyyyy   [2] 

in which the parameter  describes the directional behavior of the loading vector and the 

parameter  is the measure of the excentricity of the point of action of the loading vector with 

respect to the beam axis. The combination  = 1,  = 0 corresponds to the classical dead load 

in Fig. 1a, the Beck`s column we have for  = 0,  = 0 and the Reut`s column we obtained for 

values  = 0,  = 1. The variation of  in the interval 0 <   < 1 describes the transition from 

follower force ( = 0) to partial (sub tangential) follower force (0 <   < 1) and subsequently 

the conservative dead load ( = 1). Similar variation of the parameter   indicates transition 

from centric load ( = 0) to partially centric load 0 <  < 1 and fully excentric load ( = 1).  

The frequency equation corresponding to the boundary eigenvalue problem (1), (2) is 

obtained after rather lengthy calculations as: 
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NUMERICAL RESULTS AND THEIR DISCUSSION  

 

To understand the vibration and stability of the generalized Beck-Reut`s beam, a numerical 

solution of the frequency equation [3] was performed for a selected sets of parameters  and . 

Here we present the results for various combinations of parameters  and  as series of curves 

=f() only for the first two eigenfrequencies.  

There are basically only two types of eigencurves. In the first type there are two completely 

separated non-intersecting curves for the first and second eigenfrequency. The loss of stability 

is due to the mechanism of divergence and here the critical load is traced out by the point of 

intersection of the lower eigencurve with the vertical axis, where =0. This is the highest load 

applicable to avoid loss of stability. Above this load the second eigencurve has only theoretical 

meaning unless special measures are taken to avoid the divergence.  
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The second type is characterized by the coalescence of the two lowest eigencurves. At the 

flutter point the tangent to the eigencurves is horizontal, this is the geometrical interpretation 

of the flutter point. Immediately above the flutter point there are no more real eigenfrequencies,  

 

Fig. 2 Lowest eigencurves for partially follower force with no excentricity 

the lowest two eigenfrequencies are complex and conjugated and the loss of stability is 

manifested as vibration with increasing amplitude. The flutter point can be computed 

numerically from simultaneous equations 
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where , are fixed and F(,,,) is the left hand side of the frequency equation [3]. The 

explicit form of the function G(,,,) is not given here due to its extent, explained mainly by 

the formulas [4] giving the arguments of the goniometric and hyperbolic functions. Fig. 2 

presents the transition of the pairs of the lowest eigencurves from the case of the dead load ( 

= 1) to the Beck`s column ( = 0) for the partially follower force applied without excentricity 

( = 0). 

 

Fig. 3 Lowest eigencurves for follower force with excentricity 
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With decreasing declination  the critical divergence load increases until the point =0.5. 

Here the critical divergence load suddenly jumps from the value approximately of four to the 

value of critical flutter load which is slightly above six. With a further decrease of the parameter 

 the critical flutter load is increasing until the value of 8.12 corresponding to Beck`s column 

is achieved. Similar tendencies are valid for the case of follower compressive force ( = 0), 

which is applied excentrically, see Fig. 3. Here the transition between the divergence and flutter 

occurs at the point  = 0.175. Of course, with increasing excentricity the tendency to the loss 

of stability by divergence is stronger.  

 

 

Fig. 4 Stability map for generalized Beck-Reut`s beam 

 

General insight into the qualitative nature of the mechanism of the loss of stability can be 

obtained from Fig. 4, where the lines of transition from flutter to divergence are indicated. It is 

interesting, that the results are symmetric with respect to the line =1-. One of demonstrations 

of this symmetry is the fact, that results for the Reut`s beam coincide with those for the Beck`s 

beam. The equation =1- is the condition for self adjointness of the corresponding boundary 

eigenvalue problem [1], [2], as derived in (9). 
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CONCLUSION 

 

The frequency equation and flutter condition has been derived for the generalized Beck-

Reut`s beam. The presented parametric studies allow understanding of how the angular 

declination of the partial follower force, and the excentricity, influence the vibration and the 

stability of the compressed beam. The stability map shows parameter intervals when flutter or 

divergence occurs. 
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