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Abstract 

 

This paper deals with stability in the Liapunov sense of the 4-th order quasilinear 

differential equations with quasiderivatives. An asymptotic stability criterion is derived. An 

illustrative example is added.  
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INTRODUCTION 

 

In natural sciences as well as in engineering practice many dynamical systems are used. These 

systems are mostly based on classic derivatives. Because of the importance of the stability of 

their solutions, a large number of stability criteria have been established. However, some 

differential equations use so called quasiderivatives (see (E1) as well as (E2)). The first 

example is taken from thermodynamics. It deals with 2-nd order differential equations   
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describing a stationary distribution of temperature in the wall of a circle tube (see [3], page 

70). The second example is taken from mechanics. It is focused on 4-th order differential 

equations  
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describing an equilibrium state of a straight mass bar (see [3], page 327). The medium terms 

in (E1) resp. in (E2) are the quasiderivatives mentioned above (see their definition above 

Remark 1). The coefficients arising in the quasiderivatives need not to be differentiable. From 
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this it follows that the equations with quasiderivatives cannot be, in general, expressed as 

differential equations with classic derivatives. It means that the classical stability criteria in 

this case cannot be used. For this reason, recently, several papers concerning the stability of 

differential equations with quasiderivatives have arisen – see, for example [4], [5], [6], where 

equations of the third order were investigated.  

 

This article deals with the asymptotic stability criterion, in the Liapunov sense, of arbitrary 

solutions of a certain class of ordinary differential equations – so called quasilinear 4-th order 

differential equations with quasiderivatives 

(L)                      ),,()()()()( 001122334 ytfyLtPyLtPyLtPyLtPyL   

where (a prime (or a dot) over a term means a derivative of this term owing to the 

independent variable t) ,))(()(,3,2,1,))()(()(),()( 3410
  tyLtyLityLtptyLtytyL iii

       

),(,3,2,1),( tPitp ji  3,2,1,0j  are real-valued continuous functions defined on an half-

closed real interval ),(,),,[ 1 ytfEaaIa   are real-valued and continuous on an Cartesian  

product ,1EIa   where the symbol 1E  denotes the set of all real numbers. The terms 

4,3,2,1,0),( ktyLk
 are k-th quasiderivatives of a function ).(ty  

 

Remark 1. The differential equation (L) can be equivalently expressed in the form 

(M)               )))()(()(()())))()(()((( 1233123 ytptptptPytptptp  

                                           ).,()())()(())()(()( 011122 ytfytPytptPytptptP   

Let us consider a 4-dimensional differential system of the first order 
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Assumption 1. Let the system (S) be expressed in a vector form ).,( yfy t  Then there exists 

a number b (real or  ) and an area 0), 0, 0, (0,,,4

1  oo HEH  such that the function f 

is continuous on area HbG  ),(  and for every point G),( k  the following Cauchy 

problem 

(1)                                                    ,)(),,( kyyfy  t  

admits the only solution. We also assume f(t, o) = o for all t > b, i.e. the Cauchy problem (1) 

admits for k = o the trivial solution o(t) = o for all t > b. 

 

Definition 1. Let Assumption 1 hold. We say that the trivial solution o of the system (S) is 

stable in the Liapunov sense, if for every b  and every 0  there exists 0),(    

such that for every initial values k  k,H  and for all t  it holds that the solution 

),,( ku t  of the Cauchy problem (1) fulfils the following inequality 

(2)                                                              .),,(  ku t            

Definition 2. Let Assumption 1 hold. We say that the trivial solution o of the system (S) is 

asymptotically stable in the Liapunov sense, if 

         (i) o is stable in the Liapunov sense (see Definition 1) 

         (ii) there exists a real number   > 0 such that for all k  k,H   

               and for every   > b it holds that .0),,(lim  ku tt  

 

Definition 3. The following equation (with a dependent variable z(t)) 
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is called an u(t)-equation competent to the equation (L). 

 

Definition 4. The following 4-dimensional differential system of the first order 
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is called a competent system to the equation (N). 

 

Remark 2. It can be easily shown that the function )(1 tz  is a solution of (N) if and only if a 

vector ))(),(),(),(( 1312111 tzLtzLtzLtz  is a solution of (T).   

Definition 5. Let Assumption 1 hold for (T). Obviously, the function 0 is a solution of (N) on 

.aI  Then, according to Remark 2, a vector (0,0,0,0) is a solution of (T). We say 0 is a stable 

solution of (N) in the Liapunov sense, if (0,0,0,0) is a stable solution of (T) in the Liapunov 

sense.  

 

Definition 6. Let Assumption 1 hold for (T). Then 0 is an asymptotically stable solution of 

(N) in the Liapunov sense, if (0,0,0,0) is an asymptotically stable solution of (T) in the 

Liapunov sense. 

 

The main aim of the paper is to establish a criterion, which assures the stability of solutions of 

the equation (L). If we put 1)( tpk
 on 3,2,1, kIa

 in (L), we obtain a differential equation 

with classic derivatives. We note that the functions 3,2,1),( ktpk
 are not, in general, 

assumed to be differentiable. From this it follows that we cannot use on (L) stability criteria 

derived for nonlinear differential equations with classic derivatives. 

 

AUXILIARY ASSERTIONS 

 

Now we introduce some auxiliary assertions, which will play an important role in our 

considerations. The first of them is the special case of the Hurwitz criterion when n = 4: 

 

Theorem 1. Let us consider a polynomial 
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where 
ia ,  i = 0, 1, 2, 3, 4 are real numbers such that 

0a  > 0, .04 a  Then all zeros of the 

polynomial (3) admit negative real parts if and only if it holds that 

(4)                                                      0,,0 41  aa  

(5)                                                       ,03021  aaaa  

(6)                                                 .02

304

2

1321  aaaaaaa  

Proof. The proof of this assertion can be found, for example, in [2], Section V.6.   

 

The second assertion deals with the asymptotic stability criterion in the Liapunov sense for 

systems of differential equations of the first order. We note that we shall use in it a matrix 

norm of the form .}{
,,  ji ijjiij aa  
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Theorem 2. Let us consider a system of differential equations of the first order presented in 

the following matrix form (a dot over a letter means the derivative owing to t; the symbol o is 

the null vector) 

(7)                                    ,),(),,()( oogxgxBAxx  ttt  

where A is a real constant square matrix, B(t) is a real square matrix depending on t only, 

such that 
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where 0 is a null matrix and g a real vector function continuous on an area ,),( Hb   where 
nEHEb 11,  o  satisfying a condition  

(9)                             .0 as allfor uniformly 0/),(  xxxg btt  

If all eigenvalues of A have negative real parts, then the trivial solution of (7) is 

asymptotically stable in the Liapunov sense. 

 

Proof. The proof of this assertion can be found in [1], Head XIII.   

 

RESULTS 

 

Lemma 1. Let u(t) be a fixed solution of (L) on .aI  Let y(t) be an arbitrary function defined 

on .aI Let us put z(t) = y(t) .),( aIttu   Then an arbitrary z(t) is a solution of (N) on 
aI if and 

only if y(t) is a solution of (L) on .aI  

 

Proof.  An easy computing yields that 4,3,2,1,0, iL
i

is a linear operator on a proper space 

of functions. Specially, from this for all proper functions g(t), h(t) it follows that 

)).(())(())()(( thLtgLthtgL iii   

The sufficient condition. Let u(t), y(t) be the solutions of (L). Then 
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If we subtract the second equality from the first one, then we from the linearity of the 

operators 
iL  obtain 
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If we substitute )()( tuty   by )(tz  and )(ty  by )()( tutz   in the last equation, then we 

recieve ))(),(( tuutzz   

),,(),()()()()( 001122334 utfzutfzLtPzLtPzLtPzLtPzL   

i.e. z(t) is a solution of (N). The necessary condition can be proved similarly and so it's proof 

is omitted.   

 

Lemma 2. The solution u(t) of (L) is stable in the Liapunov sense if and only if 0 is stable 

solution of (N) in the Liapunov sense. 

 

Proof. From the proof of Lemma 1 it implies that ,0)()()(  tztuty from which, owing to 

Definition 5, we obtain required assertion.    
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Lemma 3. The solution u(t) of (L) is asymptotically stable in the Liapunov sense if and only 

if 0 is asymptotically stable solution of (N) in the Liapunov sense. 

 

Proof. It follows from Lemma 2, Definition 6 as well as the equality .0)()()(  tztuty    

 

Now we present the main result of the paper – the asymptotic stability criterion in the 

Liapunov sense of the quasilinear differential equation (L). 

 

Theorem 3. Let us consider the differential equation (L) such that (a), (b), (c) hold, where 
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                                                                where u(t) is a fixed solution of (L) on .aI                 

Then u(t) is asymptotically stable in the Liapunov sense. 

 

Proof. By Lemma 3 it suffices to prove the asymptotic stability in the Liapunov sense of the 

null solution of u(t)-equation (N), which is a competent to (L). The null solution of (N) is, 

according to Definition 6, asymptotically stable in the Liapunov sense, if and only if the 

solution (0,0,0,0) of the system (T) is asymptotically stable in the Liapunov sense. The system 

(T) can be rewritten into the form of a system (U), which is demanded by Theorem 2. The 

system (U) has a form 
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From the two last possibilities as well as (c) it implies that (9) hold. We can easily observe the 

validity of the conditions (7), (8) in Theorem 2. A validity of the conditions (a), (b) assures 

that (4), (5), (6) hold in Theorem 1. Then Theorem 1 yields that all eigenvalues of A have 

negative real parts. From this it follows that Theorem 2 hold as .4n  Consequently, 

Theorem 2 yields required stability of the solution (0,0,0,0) of the system (T).       

 

Example 1. Let us consider the equation (L) in the form (M), where 

,/11)(,/11)(,/13)( 321 ttpttpttp   

,/11)(,/13)(,/11)(,/11)( 3210 ttPttPttPttP   

.)/1(/90/90/96/54/16/20/2/1),( 28765432 tyttttttttytf   

It can be taken 2 ba . An easy computing yield that a function u(t) = 1/t is a solution of 

(L) on 2I as well as 1  = 3, 2 = 1, 
3 = 1,  

0 = 1, 1 = 1, 2  = 3, 
3  = 1. From this 

immediately follows the validity of (a) and (b).  Moreover, if ,0z  then 
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From this it implies that 
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because z  does not explicitly depend on the variable t. Thus, the condition (c) hold, too. 

Then, owing to Theorem 3, the function ttu /1)(   is an asymptotically stable solution of (L) 

in the Liapunov sense. 
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