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Abstract 

 

This article deals with the design of effective numerical scheme for solving three point 

boundary value problems for second-order nonlinear singularly perturbed differential 

equations with initial conditions. Especially, it is focused on the analysis of the solutions when 

the point c from given interval is not the centre of this interval. The obtained system of nonlinear 

algebraic equations is solved by Newthon-Raphson method in MATLAB. It also verifies the 

convergence of approximate solutions of an original problem to the solution of reduced 

problem. We discuss the solution of a given problem with the situation when the point c is in 

the middle of the given interval.   
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INTRODUCTION 

 

Nonlinear second-order dynamic systems with high-speed feedback are nowadays more 

and more popular as a result of their utilization in high frequency oscillators in electronic 

circuits and in diffusion processes control. The issue is therefore topical not only for the 

mathematicians’ community who deal with the theory and application of nonlinear dynamic 

systems, but it is important also for the field of automation. The fact that the differential 

equation investigation with small parameters at the highest derivation has been paid such 

attention is the result of the fact that they represent a suitable model for the description of 

systems with strong nonlinearities and high frequency circuits (e.g. Duffing oscillators).  
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SOLVING THE NONLINEAR EQUATION SYSTEMS 

 

Whereas for one nonlinear equation, we have a sufficient amount of reliable methods for 

separation and precision, for the systems of nonlinear equations the situation is just the opposite. 

For systems with two or three equations, we can carry out the separation of roots at least 

graphically. In the case of more equations, the possibility does not exist. We have several 

methods to make the systems´ roots more precise; however, their efficiency depends on the 

accuracy of the initial approximation (5). 
 

Simple-iteration method 

Let us use the system 𝑛 of equations with 𝑛 unknown in the form of:  

  f1(x1, x2, … , xn) = 0 

  f2(x1, x2, … , xn) = 0 

… 

 fn(x1, x2, … , xn) = 0. [1] 

The system can be modified to the form: 

g1(x1, x2, … , xn) = x1 

g2(x1, x2, … , xn) = x2 

… 

gn(x1, x2, … , xn) = xn, 

 

or to the vector form: x = G(x), where G = (g1, … , gn)
T. Now, we select the initial 

approximation x(0) and calculate the sequence of the progressive approximations from the 

iteration relation:  

x(k+1) =  G(x(k)). 

As we operate with n functions with n unknowns, via the derivation G´the matrix will be 

in the form: 

G´ =

(

 
 
 
 
 

∂g1

∂x1

∂g1

∂x2
…

∂g1

∂xn

∂g2

∂x1

∂g2

∂x2
… .

∂g2

∂xn

⋮
∂gn

∂x1

⋮           ⋱
∂gn

∂x2

… .

⋮
∂gn

∂xn)

 
 
 
 
 

. 

 

If the functions g1, … , gn are differentiable, then the condition of convergence exists for 

the method of simple iteration.  
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If G illustrates a closed area and it is differentiable within, and if there is such a number 

as α ∈ ⟨0, 1), that ‖G´‖ ≤ α for all x in this area, then in this area there is a fixed point δ of G 

images. Then the sequence of the progressive approximations to this point converges for 

a random initial approximation x(0) of the selected area.  ‖G´‖ is of a row or column character, 

or the column norm of the matrix G´.  

As the verification of the convergence condition can be difficult, it is appropriate to 

determine the maximum number of method steps, and if they are exceeded, to accomplish the 

calculation with the result that the method diverges. Then it is necessary to select another initial 

approximation, a new iteration function, or a new method. Finding the suitable iteration 

function can be very difficult (6).  
 

Jacobi method  

The Jacobi method for solving the system of nonlinear equations [1] is similar to the Jacobi 

iteration method for solving the system of linear equations. In general, from the i-th equation 

for k + 1 iteration, the  i-th unknown xi (i.e. xi
(k+1)

) is expressed , while into other parameters 

(x1, x2, … xi−1, xi+1, … , xn) the values calculated in the previous iteration k, are plugged, i.e.: 

(x1
(k)

, x2
(k)

, … xi−1
(k+1)

, xi+1
(k+1)

, … , xn
(k)

). 

If we have the system of nonlinear equations, then, according to their number (and hence 

the number of unknowns), the Jacobi form is modified as well. Its general form is as follows: 

J(x(k)) =

[
 
 
 
 
 ∂f1

(k)

∂x1
  
∂f1

(k)

∂x2
⋯

∂f1
(k)

∂xn

⋮ ⋱ ⋮

∂fn
(k)

∂x1
  
∂fn

(k)

∂x2
⋯

∂fn
(k)

∂xn ]
 
 
 
 
 

, 

where the indication ∂fi
(k)

/ ∂xj generally represents the expression (4): 

∂fi
(k)

∂xj
=

∂fi(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂xj
 . 

 

Newton-Raphson method  

This method for solving the system of nonlinear equations represents the direct 

enhancement of the Newton method for solving one nonlinear equation. If we state the system 

of nonlinear equations in the form of: 

 

f1(x1, x2, … , xn) = 0 

f2(x1, x2, … , xn) = 0 

⋮ 
fn(x1, x2, … , xn) = 0. 
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Subsequently, we can develop these functions into Taylor order to the point x(k) =

(x1
k, x2

k, … , xn
k), where  k represents k-th iteration and hence x(k) is the result of the k-th 

iteration.  

The breakdown then looks as follows: 

f1(x1, x2, … , xn)

= f1(x1
(k)

, x2
(k)

, … , xn
(k)

) +
∂f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x1
(x1 − x1

(k)
)

+
∂f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
(x2 − x2

(k)
) + ⋯

+
∂f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂xn
(xn − xn

(k)
) + o(x2) = 0 

f2(x1, x2, … , xn)

= f2(x1
(k)

, x2
(k)

, … , xn
(k)

) +
∂f2(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x1
(x1 − x1

(k)
)

+
∂f2(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
(x2 − x2

(k)
) + ⋯

+
∂f2(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂xn
(xn − xn

(k)
) + o(x2) = 0 

.... 

fn(x1, x2, … , xn)

= fn(x1
(k)

, x2
(k)

, … , xn
(k)

) +
∂fn(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x1
(x1 − x1

(k)
)

+
∂fn(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
(x2 − x2

(k)
) + ⋯

+
∂fn(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂xn
(xn − xn

(k)
) + o(x2) = 0 

 

If we consider only linear members of this development, then we can write the system in 

the matrix form as follows: 

 

−

[
 
 
 
 f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

f2(x1
(k)

, x2
(k)

, … , xn
(k)

)
…

fn(x1
(k)

, x2
(k)

, … , xn
(k)

)]
 
 
 
 

= 
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[
 
 
 
 
 
 
 
 ∂f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x1
 
∂f1(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
…

∂f1(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂xn

∂f2(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂x1
 
∂f2(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
…

∂f2(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂xn…

∂fn(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂x1
 
∂fn(x1

(k)
, x2

(k)
, … , xn

(k)
)

∂x2
…

∂fn(x1
(k)

, x2
(k)

, … , xn
(k)

)

∂xn ]
 
 
 
 
 
 
 
 

. 

[
 
 
 
 (x1 − x1

(k)
)

(x2 − x2
(k)

)
…

(xn − xn
(k)

)]
 
 
 
 

 

or in the shortened form: 

−f(x(k)) = J(x(k))(x − xk), 

where the matrix J(x(k)) is called Jacobian (or Jacobi matrix). From this equation, the vector x 

can be expressed symbolically, and it can be replaced by the new iteration value of x(k+1) and 

we obtain the equation in the form of: 

x(k+1) = x(k) − J(x(k))
−1

f(x(k)). 

The Newton-Raphson method converges quadratically (4, 7).  

 

Method of Steepest Descent 

The Descent method is utilized to search for the function minimum and can also be used 

for solving the systems of nonlinear equations. If we state the system of nonlinear equations in 

the form of: 

f1(x1, x2, … , xn) = 0 

f2(x1, x2, … , xn) = 0 

… 

fn(x1, x2, … , xn) = 0, 

with the solution x = [

x1

x2

⋮
xn

], if the function g is defined as: 

g(x1, x2, … , xn) = ∑[f1(x1, x2, … , xn)]
2

n

i=1

, 

with the minimum value equal to 0.  

If we also state the initial estimation x(0) =

[
 
 
 
 x1

(0)

x2
(0)

⋮

xn
(0)

]
 
 
 
 

, 

then it stands: x(1) = x(0) − α∇g(x(0)),  [2] 
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for the constant α > 0 and where ∇g(x(0)) is defined as: 

 

∇g(x(0)) = (
∂g

∂x1
(x(0)),

∂g

∂x2
(x(0)), … ,

∂g

∂xn
(x(0)))

T

. 

 

In the case that the curvature of the function is much too complex, then for the calculation 

of the local function minimum with the required precision, multiple iterations can be used. 

The appropriate selection of α remains difficult, as it is necessary to ensure that g(x(1)) is 

significantly smaller than g(x(0)), hence, the relation F(x1
(0)

) ≤  F(x(0)) has to stand. The fixed 

selection of α, i.e. α will be the constant, and can result in inappropriate convergence. Therefore, 

to search for the suitable value of the variable α , we utilize the function of one variable in the 

form: 

h(α) = g (x(0) − α∇g(x(0))). 

The value of the variable α minimizing h is the searched value for the relation [2]. The 

method of finding the value is described in detail in the book Solving Nonlinear Equations 

Using Numerical Analysis (3) pages 4 − 7.   

This method converges to the solution only linearly, however, it will usually converge also 

for the unsuitably selected initial approximation (3). (1) 

 

PROBLEM FORMULATION 

 

To begin with, we again assume the nonlinear singularly perturbed system interpreted by 

DE in the form of: 

εy´´ + ky = f(x, y), x ∈ 〈a, b〉, k < 0   [3] 

with the boundary conditions: 

ya = yc,      yc = yb,      a < c < b.   [4] 

We assume that point c is not the centre of the interval 〈a, b〉. The use of the numeric method 

y´´ is replaced by the differential scheme and we modify the equation [3] to the general form: 

ε

h
(
yi+1 − yi

h
−

yi − yi−1

h
) + kyi = f(xi, yi),                           [5] 

where k is a random constant and h is the selected step. Subsequently, we divide the interval 
〈a, b〉 into N-intervals of the same length if c is not the centre of this interval. Then i =
1, . . . , N − 1 and  N is the number of subintervals of the 〈a, b〉  (Fig. 1). 

 

 
 

Fig.  1 Example of division the interval 〈𝑎, 𝑏〉 for N=21 if c is not the centre of this interval 
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Thus for i = 1,2, … , N − 1 on the interval 〈a; b〉 we obtain the function: 

 

i = 1            
ε

h
(
y2 − y1

h
−

y1 − y0

h
) + ky1 = f(x1, y1), 

i = 2            
ε

h
(
y3 − y2

h
−

y2 − y1

h
) + ky2 = f(x2, y2), 

⋮ 

i = N − 1            
ε

h
(
yN − yN−1

h
−

yN−1 − yN−2

h
) + kyN−1 = f(xN−1, yN−1), 

 

and the next two function from initial conditions [4]:  

y0 = yN/const,      yN/const = yN. 

Using this method we build the functions for the number of intervals given. In order for the 

boundary conditions to hold true, N must be an even number. 

To calculate the system roots [3], [4], we use the Newton-Raphson iteration method, while 

owing to the demanding and time consuming solution, we utilize MATLAB program, in which 

we have created the program for solving the stated  problem [3], [4]  by the aforementioned 

method (1).  

 

SOLUTION AND REACHED RESULTS IN MATLAB 

 

MATLAB program was applied to the system [5], [4] for N = 6. Then interval 

〈0; 1/2〉 was divided into six subintervals 〈0,
1

12
;
1

6
;
1

4
;
1

3
;

5

12
;
1

2
〉, giving variables x0, … , x6, and 

𝑐 =
1

6
. Functions for [5] were created, where h =

1

12
, ε =

1

100
, k = −2 and function  f(x, y) =

y2 + x.   

For N = 6, i = 1, . . . ,5, thus five functions were created: 

 

f1 =
3

25
∗ (

y2 − y1

1
12

−
y1 − y0

1
12

) − 2 ∗ y1 − y1
2 −

1

12
; 

f2 =
3

25
∗ (

y3 − y2

1
12

−
y2 − y1

1
12

) − 2 ∗ y2 − y2
2 −

1

6
; 

f3 =
3

25
∗ (

y4 − y3

1
12

−
y3 − y2

1
12

) − 2 ∗ y3 − y3
2 −

1

4
; 

f4 =
3

25
∗ (

y5 − y4

1
12

−
y4 − y3

1
12

) − 2 ∗ y4 − y4
2 −

1

3
; 

f5 =
3

25
∗ (

y6 − y5

1
12

−
y5 − y4

1
12

) − 2 ∗ y5 − y5
2 −

5

12
. 
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Other two functions arose from the boundary conditions [4] f6 = y0 − y2;  f7 = y2 − y6. 
Choosing tolerance 1.0e−30 and number of iterations 30, the resulting graph is presented in        

Fig. 2.  

 

𝑻𝒂𝒃. 1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑓𝑜𝑟 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 DE [5]  

𝑤𝑖𝑡ℎ N = 6 AND c =
1

6
.                                                       Table 1 

 ITERATION 1 ITERATION 3 ITERATION 5 

y0    -0.0913    -0.0970    -0.0971 

y1    -0.0709    -0.0755    -0.0755 

y2    -0.0913    -0.0970    -0.0971 

y3    -0.1227    -0.1311    -0.1311 

y4    -0.1508    -0.1617    -0.1618 

y5    -0.1568    -0.1675    -0.1675 

y6    -0.0913    -0.0970    -0.0971 

 

For comparison, the simulation results were chosen the first, the third and the fifth iteration. 

The difference of values is presented in Tab. 1, it shows that the difference of the measured 

values after the third and fifth iteration are very small. Therefore, not all curves are visible to 

the naked eye in Fig. 2. 

 
Fig. 2 Solutions of differential equation [5] for 𝑁 = 6 and function 𝑦 = −1 + √1 − 𝑡 (black curve) 

 

The data for figure was worked out by using the MATLAB computer system. The source 

code is available from the authors upon request. Similarly, more and more points of the interval 

〈a,b〉 and number of iterations can be chosen, and then changes in individual iterations can be 

observed. 
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DISCUSSION 

 

In article (2), the similar solution of problem [3], [4] was accomplished. There the point c 

was considered in the centre of the interval 〈a,b〉 (Fig. 3). The transformation of the differential 

equation [3] to the difference equation was the same. Difference is in the function arouse from 

the boundary conditions [4]. If the point c is in the middle of interval 〈a,b〉, the function will be:  

y0 = yN/2, yN/2 = yN..  

 

 
 

Fig.  3 Division of the interval 〈𝑎, 𝑏〉 if c is exactly in the middle of the interval 

 

MATLAB program was applied to the system [3], [4] with the same conditions as in the 

article (2). Interval 〈0; 1/2〉 was divided into six subintervals. Functions for [5] were created, 

where h =
1

12
, ε =

1

100
, k = −2 and function f(x, y) = y2 + x.  Chosen was tolerance 1.0e−30 

and number of iterations 30, the resulting graph is presented in Fig. 4 and the difference of 

values is presented in following Table 2.  

 

 

MEASURED VALUES FOR SELECTED ITERATIONS DE [5]                                                

WITH N = 6 AND c =
1

4
                                                       Table 2 

 

 ITERATION 1 ITERATION 3 ITERATION 5 

y0   -0.1250   -0.1343   -0.1343 

y1   -0.0821   -0.0884   -0.0884 

y2   -0.0953   -0.1020   -0.1020 

y3   -0.1250   -0.1343   -0.1343 

y4   -0.1547   -0.1671   -0.1671 

y5   -0.1679   -0.1810   -0.1810 

y6   -0.1250   -0.1343   -0.1343 
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Fig. 4 Solutions of differential equation [5] for 𝑁 = 6, 𝑐 =

1

4
  and function 𝑦 = −1 + √1 − 𝑡                    

(black curve) 

 

As you can see, the position of point c does not have negative influence on convergence 

of the solutions of perturbed problems [3], [4] to the solution of reduced problem.  

 

CONCLUSION 

 

We proved that the solutions of perturbed problems [3], [4] converge rapidly to the solution 

of reduced problem for different number of points of dividing of the interval 〈a,b〉 with the use 

of Newton-Raphson method.   

The proposed scheme is effective because, after five iterations, we obtain highly accurate 

results (1). 
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