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Abstract 

 

At present, there are plenty of industrial robots that are programmed to do the same 

repetitive task all the time. Industrial robots doing such kind of job are not able to understand 

whether the action is correct, effective or good. Object detection, manipulation and grasping is 

challenging due to the hand and object modeling uncertainties, unknown contact type and 

object stiffness properties. In this paper, the proposal of an intelligent humanoid hand object 

detection and grasping model is presented assuming that the object properties are known. The 

control is simulated in the Matlab Simulink/ SimMechanics, Neural Network Toolbox and 

Computer Vision System Toolbox. 
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INTRODUCTION 

 

Three-dimensional pose estimation is one of the core technologies of object grasping and 

manipulation. Three-dimensional pose estimation has been extensively searched in the robotics 

random bin picking problems. The most common pose estimation adopts an algorithm 

framework shown in Fig. 1. Three-dimensional objects are perceived by one or a multiple vision 

sensor and two-dimensional images and three-dimensional information are extracted thereof. 

After the sensor captures step, the captured data first undergoes a pre-processing step that 

includes noise filtering, data structure reorganizing, and object data segmentation. Then the pre-

processed data is compared with the object’s template pose in a database that is represented by 

both features and point clouds. The comparison will yield a pose estimation result that 

represents both translation and rotation of the object with respect to a world coordinate frame. 
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Fig. 1 An architecture framework of a pose estimation algorithm 

 

The pose of a three-dimensional object can be represented by its translation (position) and 

rotation (orientation) with respect to a reference coordinate system frame, such as the common 

world frame. The position information of an object can be represented by its centroid using (x, 

y, z) with respect to a reference coordinate system frame as shown in Fig. 2(a). The orientation 

information of an object can be represented by the three-rotation angle with respect to a 

reference coordinate system frame with each axis orthogonal to one another. Euler angle is the 

most commonly used orientation representation where the order of rotation axis affects the final 

orientation. Fig. 2(b) shows the Euler angle of the objects orientation in the X-Y-Z order. That 

means the object was first rotated from its predefined position along the x-axis; the rotation 

angle is denoted as θ (pitch). Then the object was rotated along the y-axis with an angle of ϕ 

(yaw). Finally, the object was rotated along the z-axis with an angle of ψ(roll). As a result, the 

orientation of the object in terms of Euler angle is (θ, ϕ, ψ). 
 

 
(a) 

 
(b) 

 

Fig. 2 Definition and representation of a coordinate system for a 3D object (a) Right-hand Euclidean 

coordinate system for position，(b) Euler angle representation for orientation 
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Pose estimation is a common and necessary technique in robotics random bin picking (3-7), 

object localization (8), object cognition and learning (9), and 3-dimensional environment 

reconstruction. Traditional 2-dimensional vision approach (8, 11, 12) often suffers from 

difficult object definition, view point occlusion, insufficient information. These limitations 

make estimating a 3-dimensional pose of an object from 2-dimension image unreliable. 

However, as 3-dimensional optical metrology and devices improve their performance along 

time, depth information that provides additional reliable z-direction information can be easily 

obtained. Therefore, the methods estimating the pose of an objects based on 3-dimensional 

information have been extensively searched. 

 

1. OBJECT DETECTION AND MANIPULATION 

 

One of the most commonly adopted approach in 3-dimensional pose estimation is the 

correspondence framework (13). Assume there are two identical objects with different poses 

and it is possible to find a pair of corresponding points on the surface of the two objects. By 

using such corresponding point pairs, one can find the spatial transformation, which consists of 

translation and rotation between two identical objects. With a given object coordinate system, 

the transformation is the pose of the object with respect to this given coordinate system. Finding 

corresponding points relies on using 3-dimensional feature points that reside on the surface of 

objects. These feature points have unique descriptor and characteristics that enable them to 

discriminate different feature points. Ideal implementation would be to match the extracted 

feature points directly and find the transformation using minimal pairs of corresponding points. 

However, in real case, corresponding point pairs often include a portion of point pairs being 

ambiguous. That means that some point pairs may not really have a corresponding point pair 

due to mismatch. This often results in incorrect transformation In addition, the correctness of a 

feature point also influences the accuracy of pose estimation result. This is a consequence of 

the feature extraction method itself. To avoid these issues, one practical implementation often 

uses more corresponding point pairs that would result in an over determined system in finding 

the correct transform. Then techniques such as sample and consensus-based techniques or least-

square matching can be applied to reduce the impact of noises, outliers and mismatches. Finally, 

most pose estimation adopted iterative closest point to further improve and fine-tune the pose 

estimation result. 

Two major factors affecting the performance of corresponding framework are feature point 

representation and the corresponding point pair search accuracy. Feature points that are used to 

represent the surface of a 3-dimensional object can be categorized into global structural feature 

and local feature. Kahdan et al. proposed a global spherical harmonic feature (15) that considers 

the overall shape of an object. However, this approach is not suitable for industrial random bin 

picking application because often only partial 3-dimensonal surface information is available. 

Another approach is to consider only the geometrical relation, such as position or normal 

vector information, among reference points in a spatial neighbourhood on the surface of an 

object. Early methods exploited mesh-based representation of 3-dimensional surface. These 

methods include Stein’s splash feature (16) and Johnson et al.’s spin-image (17). Lately, a new 

representation of 3-dimensional surface that originated from robotics vision turned to using 

point cloud data representation. Point cloud data can be extracted from various 3-dimensional 

vision sensors such as time-of-flight, active stereo, and structured light sensors. One of the most 

commonly reference feature that is based on point cloud representation is the Point Feature 

Histogram (PFH) (18) and Fast Point Feature Histogram (FPFH) (19) proposed by Rusu et al. 
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Other than methods of extracting 3-dimensions feature point, extracting 2-D feature based 

on multiple view still plays an important role in checking correspondence. In this type of feature 

extraction, it is possible to establish a database that consists of all the views of an object and 

then find the correspondence using 2-D image feature matching. Liu et al. (7) used the edge 

feature in different view images of an object to establish a template database, and applied it to 

find the pose of an object from a pile of randomly stacked objects. However, this approach is 

often of limited effectiveness on objects of slightly flat shape. 

The reliability of pose estimation result directly affects the picking success rate in industrial 

picking/grasping operations. Objects in industrial application may often reside in a bin 

randomly stacked together or in a tray not overlapped. When an object is in a bin or a tray, it is 

often partially occluded by either other objects or the bin/tray. Therefore, it is crucial for pose 

estimation to be able to work with partial fragmented input point cloud or mesh data. Böhnke 

and A. Gottscheber proposed a progressive mesh (6) to represent the surface of an object. They 

also proposed a modified ICP method to perform progressive mesh matching. Their method 

resulted in the good pose estimation accuracy and could achieve a processing throughput of 1 

Hz. Skotheim et al. later proposed a 3DMaMa (3) method that used point cloud data as input. 

Their method is based on searching flat regions on an object as features for correspondence 

matching. Then they used a RANSAC-based method called DARCES (20) to perform pose 

estimation. Their experimental results showed good pose estimation accuracy and achieved a 

processing throughput of 4 Hz.  

 

2. CONCEPT OF PROPOSED SOLUTION 

 

The aim is to perform a reliable 3-D pose estimation on objects available in potential 

industrial applications. Existing approach often relied on using 3-D point features as cues for 

pose registration. However, such method may suffer in situation when a target object failed to 

have sufficient number of feature points. To improve such limitation, a pose estimation 

algorithm based on cocktail-feature extraction and weighted-voting scheme will be developed. 

The main concept is to use different feature, including point, edge, shape, plane, or 

discriminative geometrical structure feature, to boost up the amount of useful feature 

information. On the one hand, these various features may strengthen pose inference reliability 

due to additional information, thus reducing incorrect pose estimation. On the other hand, these 

features may compensate one another when an object failed to generate sufficient feature of a 

certain type. The voting scheme transform feature matching into a hash table look-up operation 

that could avoid exponential growth of computation speed. 

After kinematic analysis, the 3D model of simplified (three-fingered) humanoid hand can 

be created. For this task, the Autodesk Inventor software was used. In the CAD model, we did 

not assume actuators. The CAD model (Figure 3) served us only for getting a better idea and 

for observation of possible motions and operations with hand. 

It is possible to import the model from Autodesk Inventor to Matlab Simmechanics to 

further analysis. We used the tool smlink linkinv. After successful import, we gained also 

Simulink model of the model of the hand. 
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Fig. 3 CAD model of humanoid robot hand 

 

In the Matlab Simulink model, we can see parts of the simulated robotic hand after the 

import from Autodesk Inventor (Figure 3). The model had to be edited to add the required 

functionality. 
 

 
 

Fig. 4 Imported Matlab Simulink model of humanoid robot hand 
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Fig. 5 3D model of humanoid robot hand in Matlab Mechanics Explorer 

 

During the execution of a manipulation task, unexpected or pre-planned interactions of the 

object with the environment may occur. The main goal of the control is to ensure that the robotic 

system does not lose the object and that the exchanged forces remain limited. A crucial point is 

the control of the contact forces between the object and the fingers. Keeping the contact forces 

within a certain range is important for several reasons. On the one hand, these forces must be 

sufficiently high to guarantee the satisfaction of the friction cone constraints; on the other hand, 

contact forces cannot be too high to avoid saturation of the motors and waste of energy, as well 

as to preserve the materials. In this context, the presence of the force sensors at the fingertips 

plays an important role for the control of both the arm and the hand. 

Visual object detection is the most important step in robotic grasping. Many methods have 

been reported so far. As almost all the object recognition methods rely heavily on the accuracy 

of foreground object detection, efficient and reliable methods are necessary. 

In machine learning and related fields, artificial neural networks (ANNs) are computational 

models inspired by an animal central nervous systems (in particular the brain) which is capable 

of machine learning as well as pattern recognition. Artificial neural networks (Fig. 6) are 

generally presented as systems of interconnected "neurons" which can compute values from 

inputs. 

 
Fig. 6 The structure of the neural network 
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In machine learning, a deep belief network (DBN) is a generative graphical model, or 

alternatively a type of deep neural network, composed of multiple layers of latent variables 

("hidden units"), with connections between the layers but not between units within each layer. 

Deep learning is a set of algorithms in machine learning that attempts to model high-level 

abstractions in data by using model architectures composed of multiple non-linear 

transformations. Various deep learning architectures such as deep neural networks, 

convolutional deep neural networks, and deep belief networks have been applied to fields like 

computer vision, automatic speech recognition, natural language processing, and music/audio 

signal recognition where they have been shown to produce state-of-the-art results on various 

tasks. 

A Convolutional neural networks (CNN) is composed of one or more convolutional layers 

with fully connected layers (matching those in typical artificial neural networks) on top. It also 

uses tied weights and pooling layers. This architecture allows CNNs to take advantage of the 

2D structure of input data. In comparison with other deep architectures, convolutional neural 

networks are starting to show superior results in both image and speech applications. They can 

also be trained with standard back propagation. CNNs are easier to train than other regular, 

deep, feed-forward neural networks and have many fewer parameters to estimate, making them 

a highly attractive architecture to use.  

Comparing with the traditional object recognition based on the deep learning model, we 

focused on the object pose estimation including object recognition. Deep learning methods have 

the capability of recognizing or predicting a large set of patterns by learning sparse features of 

small set of patterns. With this advantage, we can use a small set of poses to train the deep 

learning model, and then predict a large set of poses with the model (25). 

For general objection recognition and image classification tasks, variants of Convolutional 

Neural Networks (CNNs) have emerged as robust supervised feature learning and classification 

tools, especially when combined with max-pooling (MPCNN) (Fig. 7) (26). 

 

 
 

Fig. 7 MPCNN architecture using alternating convolutional and max-pooling layers (26) 

 

MPCNNs include convolutional layers and subsampling layers. MPCNNs are different 

according to the variety of training and realization of convolutional and subsampling layers. 

Convolutional layer 

The parameters of the convolutional layer are: the number of maps, the size of the maps and 

kernel sizes. Each layer (L) includes maps (M). A kernel (K) of size is shifted over the valid 

region of the input image. Each map in Layer Ln is connected to all maps in layer Ln-1. Neurons 

of a given map share their weights but have different input fields (26). 
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Max-pooling layer 

The output of the max-pooling layer is determined by the maximum activation over non-

overlapping rectangular regions. Max-pooling improves generalization performance (26). 

Classification layer 

To complete the MPCNN, a shallow Multi-layer Perceptron (MLP) is used. The output layer 

has one neuron per class in the classification task (26). 

 

3. EXPERIMENT 

Object Detection 

The system consists of the Matlab SimMechanics model of robotic hand scene with objects and 

simulated camera. The virtual objects are in the reach of the vision system and are recognized 

through the Matlab Computer Vision Toolbox with implemented model of MPCNN. 

The input images come from RGBD camera data that, opposed to simple 2D image data, has 

been shown to significantly improve the grasp detection results. 

Visual object detection is the first key action for robotic grasping. It is needed to use or develop 

reliable methods that effectively recognize foreground objects that are present at the input to 

the vision system and detect the objects from the background. 

One of the possible approaches is to use sparse coding or K-means clustering. The first step is 

to build dictionary of objects. Clustering enables us to separate groups of color components of 

the images with background and objects. Each component has a location in feature space and it 

is important to find partitions such that components within each cluster are as close to each 

other as possible and as far from components in other clusters as possible (25). 

Object Recognition and Pose Estimation 

Using the simulation, we implemented object pose estimation and pose estimation using the 

methods of deep learning, which have the capability of recognizing or predicting large set of 

patterns by learning sparse features of small set of patterns. With this advantage, we can use a 

small set of poses to train the deep learning model, and then predict a large set of poses with 

the model (25).  

Robotic Grasping 

This stage presents the system that changes the position and orientation of the gripper in order 

to grasp the objects. 

 
 

Fig. 8  3D model of humanoid robot hand grasping the object  
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CONCLUSION 

 

The developed models described in the sections above were implemented in selected 

Matlab Toolboxes (Computer Vision System Toolbox, Deep Learning Toolbox and 

SimMechanics). 

This paper represents a simulated model of a multi-fingered robotic hand for grasping tasks. 

The model includes kinematics, dynamics, object representation and contact modelling. The 

contact model determinates the forces that are applied to the object by the robotic hand. The 

object detection, object recognition and robotic hand pose estimation are based on Max-pooling 

Convolutional Neural Networks – one of the most popular deep learning models. Using deep 

learning enables to avoid hand-engineering features, learning them instead. 
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