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Abstract 

 

This paper offers a theoretical study of special type of electrostatic quadrupole deflection 

system (EQDS) intended for ion beam optics. We deal with EQDS consisting of electrode pairs 

with rotational symmetry design. This systems was pre-designed for an ion beam modification 

and trajectory controlling. Basic assumptions for determination of transfer characteristics of 

such systems are analysed on the basic of charged particle dynamics.  

We are especially interested in the electrostatic field distribution among electrodes inside 

the mentioned type of EQDS. Typical case of the Sturm-Liouville boundary value problem 

called Bessel`s differential equation arises in calculation of the electrostatic scalar potential 

with rotational symmetry. Bessel`s functions are particular solution of Laplace equation in this 

case. The scalar potential equations of motion for ions in this electrostatic field are found. The 

path of charge-particles in this field could be determined by solving the trajectory equation of 

motion in Cartesian coordinates. 

 

Key words 

 

ion beam, quadrupole, Laplace equation, Bessel`s differential equation, Bessel`s functions,  

 

1. INTRODUCTION 
 

There are numerous types of electrostatic EQDS, each one of them is classified according 

to the properties and domain of application. In recent years, a number of publications have been 

devoted to the optimum design of EQDS and make the comparison between different electrodes 

shapes which are computed with the aid of transfer matrices. Design of such electrostatic 

quadrupole lens consists of four identical symmetric elements. The four-element lens systems 

have been widely investigated experimentally (1) and theoretically (2), showing that four 
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element lenses are necessary to produce an image at a specific position and magnification. The 

ideal ESQ lens system consists of four parallel electrodes with hyperbolic cross-sections. 

This research is concerned with the theoretical analysis of ion beam dynamics in 

electrostatic field inside a special type of ESQ lens with symmetrically placed flat circular-

shaped electrodes. In most cases, electrostatic field distribution as well as ion beam trajectory 

inside electrostatic lenses (e.g. lenses included into an ion beam-lines) are modelled 

numerically, since analytical solutions are too complicated or even impossible. Numerical 

modelling is usually carried out using SIMION and LENSYS commercial packages, and a 

variety of performance parameters are obtained. In our contribution we consider lens consisting 

of electrically charged electrodes of circular shape generating electrostatic field, distribution of 

which is analytically solvable. The considered ESQ consists of four flat cylindrical electrodes 

mounted in pairs (see Fig.1).  

In each case, ESQ performance is governed by the electrostatic fields among electrodes (which 

are determined by Laplace’s equation) and the dynamics of ion motion (which are governed by 

Newton’s laws). Some general methods to solve the electrostatic potential distribution have 

been developed. The first of them is the 

Separation of Variables Method which is used to 

solve Laplace`s equation in case of cylindrical 

symmetry. In this method, the solution of 

mentioned equation is written as a multiplication 

of functions where each of them depends on one 

variable only (3-10). With the Boundary Element 

Method (BEM) or Charge Density Method 

(CDM), the system of electrostatic lenses is 

replaced under the applied potentials by a system 

of rings of charge that assumes the same geometry 

as the cylinders (10-15).  

A widely used method to obtain the 

electrostatic field distribution is The Finite Element Method (FEM). It is a numerical technique 

for obtaining solutions to boundary value problems. The principle of the method is that the 

potential distribution will be such that the potential energy of the electrostatic field is a 

minimum and so this potential energy is expressed in terms of the potentials at the vertices of 

each and all the triangular elements (16-18). A solution of Laplace`s equation can be also found 

by the Finite Difference Method (FDM). Among the most often used are the five-point and 

nine-point relaxation techniques (19-22). 

We used the Separation of Variables Method and found equations of motion for ions 

passing through electrostatic field in special type of EQDS with rotationally symmetrical (flat 

circular-shaped) electrodes, and next we simplified those equations for the limit case of very 

narrow ion beam entering to the centre of the system. Solution of the mentioned equations will 

allow find ion beams trajectories and characterize considered system as an ion optical device. 

Our results provide the basis for analytical derivation of transfer characteristics (transfer 

matrices) for such specifically designed system as well. The motivation of the work is to 

investigate limitations for analytical study in some cases of specific shaped electrodes, and to 

study the possibility of generalizing of obtained results alternatively.  

The novelty in this paper is limited, since charged segments of these types have been used 

occasionally since the early days of ion beam facilities. However, there may be a scope for 

accurate analytical solution of these structures using standard the technique of calculation that 

has not been considered to be important by earlier workers.   

 

                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Fig. 1  EQDS with rotationally symetric design 
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2. ELECTROSTATIC POTENTIAL BETWEEN A PAIR                                                             

OF FLAT CIRCULAR POLES 

 

Principles of electrostatic deflection systems are well understood. Here we give only a brief 

theoretical considerations relevant to the system with specific shape described above and based 

on standard procedures (23, 24). In the absence of charges, the electrostatic potential (x;y;z) 

satisfies Laplace’s equation: 

0  ,                                                                                                                                       [1] 

In case of rotational symmetry (see Fig.2), it is appropriate to transform equation [1] to 

cylindrical coordinates: 
2 2 2

2 2 2 2

1 1
0

r rr r z

      

  
                                                                                                        [2] 

and consider the fact: 
2

2
0

 


 .                                                                                                                                     [3] 

Consequently, the scalar potential (r;z) can be found by solution of the following equation: 
2 2

2 2

1
0

r rr z

    

 
   .                                                                                                                 [4] 

In cylindrical coordinates, the scalar potential is separable and it is given by the formula: 

     ;r z r Y z   .                                                                                                                     [5] 

Functions  r and  Y z must obey: 

   
 

2

2

1r r
r

r rr

 




 
   ,                                                                                                         [6] 

 
 

2

2

Y z
Y z

z





  .                                                                                                                        [7] 

Variation of the parameter  gives different modes of potential distribution.  is constant that 

can be positive, negative or it can be equal to zero. In the following text, we considered all 

mentioned events. 

a) In the first case if   0 , the solution of equation 

[6] can be found by means of simple substitution: 

 
 r

f r
r






 .                                                       [8] 

As it can be easy shown: 

   0 ln 0rC A
f r e e

r


     and:     0 0lnr A r B   .      [9] 

Integration constants A0 a B0 depend on boundary 

conditions. Function  Y z  in case if 0  can be 

determined from equation [7]:  

 0 0 0Y z C z D  ,                                                    [10] 

where C0 and D0  are integration constants. 

Consequently in mentioned case ( 0  ) the 

particular solution of differential equation (4) can be 

written in the following form:  

 0 0 0 0 0; ln lnr z K z r L r M z N     .                                                                                           [11] 

Integration constants K0, L0, M0 a N0 must be determined from boundary conditions.  

b)  In the second case if   0 , the    can be written in the form: 
2k  .                                                                                                                                      [12] 

 

                                                             

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     

Fig. 2  Pair of circular-shaped electrodes  
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Solution of equation [7] can be found as: 

   1 sinpY z Y kz   ,                                                                                                                 [13] 

in this case. Equation [6] can be written as a special case of modified Bessel`s differential 

equation: 
2

2 2

2
0x x x

xx

 



 
    ,                                                                                                                [14] 

where:  x kr .                                                                                                                         [15] 

Next, solution of (6) can be determined as follows:  

     1 2 0 2 0r A kr B kr    .                                                                                                      [16] 

0  and 0 are modified Bessel`s functions of zero order: 

 
 

2

0 2
0

1

2!

m

m

x
x

m






 
  

 
    ,       

 

 

1 2

0 0 2
1

12
ln

2 2!

m m

m

m

Hx x
x x

m
  








      
       

      
                              [17] 

where 
1 1 1 1

2 4 6 2
mH

m
      and   is Euler-Mascheroni constant:   lim ln 0,5772n

n
H n


   . 

Therefore, general solution of equation (4) can be found as:  
         1

2 0 2 0 0 0 0 0; sin ln lnr z A kr B kr kz K z r L r M z N                                                   [18] 

in the case of the   0 consequently. 

c)  In the third case   0 , i.e.: 
2k   ,                                                                                                                                     [19] 

solution of equation [7] can be found as: 

  3 3

kz kzY x A e B e  ,                                                                                                                  [20] 

where A3 a B3 are integration constants. Equation (6) can be written as a follows: 
2

2 2

2
0x x x

xx

 



 
    .                                                                                                              [21] 

Equation (21) is special case of Bessel`s differential equation and solution of [6] can be found 

in the following form: 

     2 2 0 2 0x K x M x     ,                                                                                                      [22] 

where: 

 
 

 

2

0 2
0

1

2!

m m

m

x
x

m





  
   

 
 ,           0 0 2 4 6

2 2 2 2
ln ....

2 1 2 3

x
x x C x x x



    
              

   
     

are Bessel`s functions of zero order. Then general solution of equation (4) is: 
         2

2 0 2 0 3 3 0 0 0 0; ln lnkz kzr z K kr M kr A e B e K z r L r M z N                                          [23]  

in case of   0 . 

 

3. APPLICATION OF BOUNDARY CONDITIONS 

 

Spatial distribution of scalar potential  inside the EQDS must obey equation [4]. As we 

have shown in the previous section, functions (1) and (2) determined by [18] and [23] satisfy 

this equation. Now we need to decide which of these two functions describes the scalar potential 

among circular poles of the EQDS. Boundary conditions need to be applied in this decision. 

In the area 0z a  , scalar potential  must obey the following conditions: 

  1;0r  ,   2;r a     .                                                                                                         [24] 

where 1 and 2 are electrodes potentials. It can be easily shown that only solution type [18] 

can satisfy boundary conditions [24]. Solution [23] cannot meet these conditions in any case. 

Therefore, spatial variation of electrostatic potential in the investigated area can be written in 

the form [18], while the following conditions must be satisfied in addition:  
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 sin 0ka   ,   sin 0 0k   .                                                                                                  [25] 

It follows from [25]: 

ka n       , 0k m    ,                                                                                                       [26] 

where n a m are integral numbers (0, 1 , 2 , 3 ,...). Taking into account the fact that there are 

no reasons that any part of solution is periodical, it is possible to consider m = 0 and n = 1.  

Then: 0   , k
a


 .                                                                                                                  [27] 

In addition, the boundary conditions [24] can be satisfied only in case: 

0 0K   , 0 0L  .                                                                                                                         [28] 

For that reason, the scalar potential in the mentioned area must be written in following form: 

  2 0 2 0 0 0; sinr z A r B r z M z N
a a a

  
  

      
         

      
 .                                                                  [29] 

After substituting [24] to [28], integration constants can be determined as: 

0 1N   ,  2 1

0

U
M

a a

 
  .                                                                                                        [30] 

and formula for the scalar electrostatic potential takes the next form: 

  2 0 2 0 1; sin
U

r z A r B r z z
a a a a

  
   

      
         

      
,                                                                   [31] 

where U = 2 - 1 is voltage applied to electrodes. For the intensity of the electrostatic field, it 

applies: 

E   .                                                                                                                                    [32] 

In case of axial symmetry in cylindrical coordinates (considering [3]), it holds: 

E k E E k
r z

 
 

 
     

 
,                                                                                                     [33] 

where k and  are unit vectors perpendicular and parallel to the electrode surface. As it is clear 

from the symmetry, in limit case: 

0
lim 0
r

E


 .                                                                                                                                   [34] 

From [17], it results that condition [34] can be satisfied only when B2 = 0. Then the scalar 

potential  and intensity E  of electrostatic field between a pair of flat circular electrodes inside 

EQDS can be determined by the next formulas: 

 
 

2

12
0

1
; sin

2!

m

m

U
r z A r z z

a a am

 
 





   
     

   
  ,                                                                           [35] 

   

2 1 2

2
1 0

1 1
sin cos

! 1 ! 2 2!

m m

m m

U
E A r z A r z k

h m m a a a a a am

     


 

 

         
           

          
    .                    [36] 

Constant A is a free parameter enabling to take into account physical characteristics of the 

system.   

  

4. SUPERPOSITION PRINCIPLE APPLICATION 

 

Considered EQDS consists of two pairs of electrodes and each of this pairs generates 

electrostatic field described by formulas [35] and [36] respectively. The mentioned pairs are 

placed symmetrically and rotated by 90 degrees (see Fig.1). We note that adding the second 

pair of electrodes causes a symmetry breaking. Electrostatic field generated by the whole 

system is not rotationally invariant and problems with application of boundary conditions arise 

when applying the method described above. To avoid these problems we assume that a is larger 

than electrodes radius R, i.e. none of electrode lies in the calculated electrostatic field. In that 

case we assume that superposition principle can be applied in the estimation of entire field in 
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the area between both pair of electrodes. In system configuration shown in Fig.1, distributions 

of electrostatic fields generated by both individual pairs of electrodes can be written by means 

of [36] as: 

 

   

2 1 2

1 1

2
1 0

1 1
sin cos (37)

! 1 ! 2 2 2 2!

m m

m m

Ua a
E A r z A r z k

h m m a a a a a am

     


 

 

            
                

             
 

 

   

2 1 2

2 2

2
1 0

1 1
sin cos (38)

! 1 ! 2 2 2 2!

m m

m m

Ua a
E A r y A r y k

h m m a a a a a am

     


 

 

            
                   

             
   [38] 

where 2 2r x y  , 2 2r x z   and U1, U2 are voltages applied on single pairs of electrodes. 

Next, we can consider: 
r x

x r





  ,  

r z

z r





                                                                                                                      [39] 

and transform formulas [37] and [38] to Cartesian coordinates. If we apply superposition 

principle given by well-known formula:                            
   1 2

E E E                                                                                                                                [40] 

coordinates of intensity of total electrostatic field in the considered area inside the EQDS can 

be approximated as:
 

 
   

2 1
1 1

2 2

2
1

1
cos cos

2!

m
m m

x

m

E mx A r z A r y
a a a am

   


 



      
         

      
                                            [41] 

 
   

 2 1 2
1

2 2

2
1

1
cos sin sin

2 2!

m
m m

y

m

U
E Amy r z A r y A y

a a a a a a a am

      






          
                

          
         [42] 

 
   

 2 1 1
1

2 2

2
1

1
sin cos sin

2 2!

m
m m

z

m

U
E A r z A zm r y A z

a a a a a a a am

      






          
                

          
      [43] 

where we used: 

 cos sin
2


 
 

   
 

,    sin cos
2


 
 

  
 

. 

It is clear from [41], [42] and [43] that intensity vector inside the EQDS can be written in the 

form: 

E       ,                                                                                                                                 [44]     

where: 
   2 1

0; ;
U U

a a


 
   

 
   and  

 
 

2 1

2
1

1

2!

m

m m

ma am

 
   





   
     

   
 .                                          [45a,b] 

 is a component corresponding to the homogeneous electrostatic field in ideal case of infinitely 
large electrodes and   is correction to the field scattering generated on edges of electrodes. 
Individual vectors in formula [46b] are: 
 

   
1

2 2 2 2cos ; cos ; sin
2

m

m A x y mx z my z x y z
a a a a

   


         
           

        
                                         [46] 

   
1

2 2 2 2cos ; sin ; cos
2

m

m A x z mx y x z y mz y
a a a a

   


         
           

        
                                        [47] 

0; sin ; sinA y A z
a a a

  


    
      

    
.                                                                                           [48] 

 

 

 

                                                                                              

[37] 



  

67 
 

5. EQUATIONS OF MOTION 

 

Equations of motion of ion with charge q and mass M in non-relativistic case can be written as: 
2

2

d r
M qE

dt
 .                                                                                                                                     [49] 

where  , ,r x y z is an ion position vector. It is necessary to substitute the calculated intensity 

vector [44] to equation [49]. However, expression [49] is then quite complicated whereas it 

contains sums [45b]. But if the ion beam is very thin and it spreads around x axis (i.e.  z a

and y a ), the next approximation is possible: 

0z
a


  ,  0y

a


  , and  therefore sin z z

a a

  
 

 
, cos 1z

a

 
 

 
.                                                        [50] 

Taking into account [50] equations of motion can be simplified to the form: 

 
    

2 12
1 1

2 2 2 2

2 2
1

1

2!

m
m m

m

d x
M q x m A x y A x z

a adt m

 


 



 
     

 
                                                       [51] 

 
   

2 1 2 22
1

2 2 2 22

2 2
1

1 1

2 2 2!

m
m m

m

qUd y y
M q y Am x y A x z A q

a a a a adt m

   






         
               

         
            [52]

 

 
   

2 1 2 22
1

2 2 2 21

2 2
1

1 1

2 2!

m
m m

m

qUd z z
M q z A x y A m x z Aq

a a a a a adt m

   






         
               

         
  .         [53] 

When we assume that squared coordinates are very small numbers, higher powers in series on 

the right sides of equations [51], [52] and [53] can be neglected. In general, it is sufficient to 

consider only the first members of series. However, in the application of that approximation, 

we must currently take into account that electrostatic intensity must hold: 

0E  .                                                                                                                                    [54] 

To satisfy the condition [54], it is necessary to consider both first and second members of series 

in equation [51]. From [54], it also results: 

A A

 and the next form of equation of motion can be written in the limit case:   

   
2 22

2 2 2 2

2
1

2

d x
M qA x y x z x

a adt

                        

                                                                         [55] 

 
2 22

2 22

2
1

2

qUd y
M qA x z y

a a adt

      
        

     

                                                                                  [56] 

 
2 22

2 21

2
1

2

qUd z
M qA x y z

a a adt

      
        

     

 .                                                                               [57] 

Parameter A can be determined by considering the limit values for a  , R  . On the basis 

of this, we believe that: 

2 2

1 22

a
A U U

R




 
   

 
,                                                                                                                [58] 

where  is the constant depending on ion dynamic characteristic (energy). Equations of motions 

[55], [56] and [57] must be solved if one is looking for trajectory of ion beam passing through 

the area inside the considered EQDS. For optimum performance, the design parameters of the 

EQDS a and R should be chosen. Ion enters the EQDS field on the x axis (in initial position of 

ion y = 0 and z = 0) and it is next deflected by the electrostatic force. From [56] and [57], it is 

clear that deflection of ion beam in directions of applied voltages (i.e. directions of both y and 

z axes) is governed by force components: 

 2 ,y

qU
F yf x z

a
   ,  1 ,z

qU
F zf x y

a
   ,                                                                                   [59] 
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where:        
2 2

2 2, 1
2

k kf x x qA x x
a a

      
      

     

,   ,kx y z  .                                                         [60]  

Equations [59] reflect symmetry of EQDS design and represent the path to reveal the 

relationship between the dynamics of ion and optical properties of the EQDS.  

 

6. CONCLUSION 
 

Several types of deflection systems are used at present time, including the ring, conical, 

and hemispherical designs. The quadrupole system has many variable geometrical and 

operational parameters, thus conclusive result in this field is rather difficult. Our paper focuses 

on the system with special type of design characterized by rotational symmetry. The design of 

this EQDS was described above. We found how the scalar potential function is related to the 

system geometry in this case and reviewed the ion dynamics in such special type EQDS. The 

potential distribution inside the quadrupole system is calculated by the Separation of Variables 

Method solving analytically Laplace's equation in three dimensions. 

Finally, we would like to point out that the presented contribution is only focused on 

preliminarily results. The results reported above allow us to start the discussion on the 

possibility to describe such systems by means of the methods used in ion beam optics. However, 

the practical application of such system design remains unclear yet and requires experimental 

observations.  
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