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Abstract 

 

In this paper, we propose theoretical basis for investigation of dynamics of acoustic 

phonons in a thin layers containing nano-scale structural inhomogeneities. One-dimensional 

(1D) model of a crystal lattice was considered to reveal specific features of the processes 

arising in such system of phonons in equilibrium state. Standard quantization of energy of 1D 

ionic chain vibrating by acoustic frequencies was carried out while the presence of foreign ions 

in this chain was taken into account. Since only two dimensions are dominant in thin layers, 

only longitudinal vibrations of the chain in the plane of the layer were considered. Results 

showed that foreign ions affect the energy quantization. Phonon-phonon interaction between 

two phonon`s modes can be expected if the mass of foreign ions implanted by ion-beam differs 

from the mass of ions in the initial layer.  

We believe that the obtained results will help to understand the character of phonon 

systems in nanostructured thin layers prepared by ion-bem technology, and will allow better 

explain some thermal and electrical phenomena associated with lattice dynamics in such layers.  
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1. INTRODUCTION 
 

The study of the dynamics of phonon systems is one of the central tasks in the solid state 

physics. Quantization of energy of vibrating lattice described by phonons concept, much like 

quantization of electrons or holes, affects the electrical, optical and thermal properties of ultra-

thin films and nanostructures. The consequences of phonon quantization can be found in the 

non-radiational and radiational relaxation of electrons (1–3), phonon bottleneck effect (4, 5) 

and stimulated far-infrared emission from quantum dots (6). Acoustic phonons play an 

http://www.mtf.stuba.sk/english/institutes.html?page_id=10644
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important role in the electrical and thermal properties of semiconductor materials. They are the 

dominant heat carriers in moderately doped semiconductors in a wide range of temperatures 

from cryogenic to almost the melting point (7). More recently it has been shown theoretically 

that confinement-induced modification of the acoustic phonon spectrum in free-surface 

ultrathin films (8) and nanowires (9–11) leads to a significant decrease of the in-plane lattice 

thermal conductivity even at room temperature. The decrease of thermal conductivity owing to 

phonon confinement may bear important consequences for the electronic industry in a view of 

continuous miniaturization. Folded acoustic phonons in layered medium have been studied 

theoretically by Rytov (12). Later, the folded phonons have been observed experimentally in 

quantum well superlattices (13). Many theoretical results for quantized phonons in free standing 

films, nanowires and spherical quantum dots have been obtained using the analogy with 

acoustics and classical mechanics (14–16). 

The phonon concept valids when the anharmonic contribution in crystal vibration is small 

compared with the harmonic. In such a case, the different phonon modes are independent and 

do not interact with each other. However, this simple picture is only an approximation. In the 

case of large atom displacements, the higher-order terms obtained by expanding of the potential 

energy should be taken into account. Keeping the cubic term, the interaction between phonon 

modes can be described and thus the phonon-phonon interaction between two phonon`s modes 

can be explicitly considered (17). 

In this contribution, we discuss the quantization of energy in 1D crystal lattice with defects 

in the long-wave approximation. The following two cases are considered: 

1. The simplest example of a local perturbation of ion`s mass when the foreign ions are included 

to 1D ionic chain. In such a case, a discontinuity of stresses in the chain can be generated 

and vibration of the chain can be influenced by these local mass defects. 

2. Perturbation of elastic moduli in the 1D crystal lattice. In such a case, we have a discontinuity 

of inter-atomic bonds. The interaction between two ions in the chain is characterized by the 

elastic force constant which varies along the chain. 

When talking about a local perturbation in a linear elastic medium or 1D crystal lattice, we 

mean the presence of foreign ions in ionic chain in the area of a few atomic distances, the elastic 

properties of which distinguish from those in the rest of the chain. There is a number of types 

of local and planar defects in real crystals. In the continuum theory, the presence of such defects 

in an elastic medium is associated with special boundary conditions at some interfaces for the 

equation of motion of the non-perturbated medium. Changes of mass and elastic constant of 

medium play a crucial role. For example in ref. (18), the boundary conditions consist of a local 

perturbation of the elastic moduli at the interface.  

In this paper, we present a simple model for investiagtion of influencing local perturbations 

in crystal on the crystal lattice dynamics. The aim of the paper is to lay the foundation for a 

detailed qualitative analysis of the phonon system in locally perturbed media. We aim to 

identify respective contributions of local defects induced by ion-beam impact to the acoustic 

phonons energy distribution. Our attention is concentrated on the dynamics of equilibrium 

phonons, particularly on the spectral evolution of their distribution and its dependence on local 

changes of mass and elastic force constant.  

 

2. VIBRATION OF NON-LINEAR ELASTIC CONTINUUM 

 

Before analysis of behaviour of non-linear vibrating system, it is first necessary to analyze 

the linear system. As a classical example may be mentioned Hamiltonian of finite-dimensional 

system with coupled degrees of freedom. The behaviour of such system for small excitations is 
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determined by the form of the quadratic part of its Hamiltonian. This method corresponds to 

the linear dynamics.  

Example of nonlinear systems, the behaviour of which depends on the linear part, is weakly 

interacting with dispersive waves in continuous media. These systems studied in wave 

turbulence often have analogs among discrete systems, e.g., a chain of coupled oscillators. 

Correspondingly, their quadratic Hamiltonians have analogs among the Galin–Arnold 

canonical forms (19). Theory of wave turbulence is very often applied to homogeneous systems, 

and the quadratic Hamiltonian describing linear interactions in such homogeneous systems is 

given by (20): 

 
2 1

2k k k k k k k k
H A a B a a B a a dk  

 

 
   

   ,                                                                                    [1] 

where 
k

a  is a complex-valued field. 

By means of linear canonical transformation to the new variables 
k

b , the mentioned  

Hamiltonian can be rewritten to the next normal form : 
2

k k
H b dk  ,                                                                                                                         [2] 

where 
k

  obeys a linear dispersive relationship. 

The problem of searching the canonical form for the quadratic Hamiltonian for the 

inhomogeneous systems can be solved by the extension of certain oscillatory members onto the 

continuous space. Such a formulation lays down a necessary framework for generalization of 

the Hamiltonian description onto the inhomogeneous media. General Hamiltonian for the 

system of linear waves propagating in the inhomogeneous media for the variable qa  is given by 

the following quadratic form (21): 

      
1

2
q q q q q qH A q,q a a B q,q a a B q,q a a dqdq   

   

 
      

   .                                                       [3] 

In this paper, we try to point out analogies of our results obtained using discrete model with the 

above mentioned results [1-3]. It can be assumed that some nonlinearities in lattice vibration 

can be generated by the local structure perturbations.  

 

2. 1D MODEL OF CRYSTAL LATTICE WITH LOCAL PERTURBATION 

 

The 1D ion chain model of crystal lattice with local perturbation is studied (Fig.1). A 1D 

lattice seems to be an appropriate model that could, in addition, it allows for some mathematical 

treatment and thus a better theoretical understanding of the phenomena and mechanisms at play. 

Indeed, many mathematical results are known about the behaviour of waves in 1D lattices, 

concerning the existence of localized waves (22, 23), the form of those waves in the high-energy 

limit (24) or in the low-energy limit (25), or the behaviour under shock (26, 27).  

 

xn-1 

mn-1 mn mn+1 mn+2 

d d d 

Fig.1 1D model of the crystal lattice. All ions in the chain are identical except ions in positions n, 

n+1 and n+2 

x 
xn xn+1 xn+2 

                      Local perturbation 

xn-2 
xn+2 xn+3 

mn-2 mn+2 mn+3
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Consider N ions of unequal masses  nm  and charges  nQ with nonlinear nearest-neighbour 

interactions, described by a potential energy U. The position of the n-th ion will be denoted by 

xn, where the ions are numbered in order of increasing value of their axial positions, so that n > 
m implies that xn > xm (see Fig.1). Initially, the particles are at rest at positions 0nx , which is 

an equilibrium state for the system.  

Ions are bound relatively strongly in their equilibrium positions in the crystal lattice. The 

following analysis is based on the classical description of the dynamics of ions in the 1D crystal 

lattice in harmonic approximation. 

 

4. EQUATIONS OF MOTION 

 

We consider one-dimensional crystal represented by a linear chain of N ions (Fig.1), which is 

not inserted into the external field. It turns out that the results provided by the solution of such 

a simplified one-dimensional model can be applied in the real three-dimensional case. The total 

potential energy U  of the chain depends on the positions of all ions  nx in the chain, and in 

case of Coulomb interaction, it can be expressed by: 

  
0

1

2 4

j k

i

j kj k

Q Q
U U x

x x
 


 ,                                                                                               [4]                                      

where Qj and Qk  are the electric charges of the j-th and k-th ion respectively. Let  iz are 

displacements of ions from equilibrium positions, displacement of n-th ion in the chain is 

defined as follows: 

0n n nz x x  .                                                                                                                                [5] 

If displacements of ions from the equilibrium are small
nz d , the potential energy U can be 

expanded to the Taylor series: 

  
0

0
0

2

0

1

2!
n n

n n
k k

i n n k
x xn n kn n kx x
x x

U U
U U x z z z

x x x

 

   




   
      

   
                                                    [6] 

and harmonic approximation can be applied, i.e. only the second degree polynomial function 

  iU z can be considered. Moreover, given that: 

0

0

n n
n x x

U

x






 
 

 
,                                                                                                                             [7] 

due to the fact that potential energy U has a minimum for each equilibrium positions  0ix (see 

Fig. 2), the potential energy U  in the harmonic approximation s given by: 

0 ,

1

2
n s n s

n s

U U A z z   ,       where   0 0iU U x  and 
0

0

2

,

n n

s s

n s
x xn s
x x

U
A

x x



  


 
  
 

   .                              [8] 

Then the force exerted on the n-th ion in chain can be written as: 

, , , ,

1 1

2 2
n n n n i n i n j j n k k

i j kn
i n i n

U
f A z A z A z A z

z




 

            .                                                                [9] 

If the displacement of all ions from equilibrium is the same ( iz z ), the whole crystal is 

shifted and force [9] acting on each ion in chain is zero in this case: 
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, 0n k

k

A z  .                                    [10] 

It results into the next condition for 

coefficients 
,n kA  from the relation 

[10], subsequently:: 

, 0n k

k

A  .                                     [11] 

Assuming inhomogeneous 1D chain, 

there are different masses of 

individual ions (see Fig.1) and also a variety of binding forces between them can be considered. 

Using the following notations:  

 
, 1 , 1n n n nA k     ,  

, 1 , 1n n n nA k    ,       
, ,n n n nA k                                                                             [12] 

and applying the tight binding approximation, the equation of motion for the n-th ion in the 

chain is given by:  
2

, 1 1 , , 1 12

n

n n n n n n n n n n n

z
f m k z k z k z

t




              .                                                                                 [13] 

From relation (11) it results that: 

, 1 1n n n nk k k    ,                                                                                                                           [14] 

and equation (13) can be rewritten to the next form:   

   
2

, 1 1 , 1 12

n

n n n n n n n n n

z
m k z z k z z

t




        .                                                                                      [15] 

System of equations of motion (15) for n = 1… N allows to describe the dynamics of ions in 
the frame of the established 1D chain model. Solution of this system is the set of functions

  nz t , which describes time dependence of the displacements of ions from equilibrium in the 
chain.  
 

5. ENERGY OF LINEAR CHAIN OF IONS 

 

The total mechanical energy of linear chain of ions is determined by the sum of its kinetic 

energy Wk and potential energy U:  

kE W U   .                                                  [16] 

Kinetic energy Wk is determined by: 

2

1

1

2

N

k n n

n

W m z



  .                                                                                                                          [17] 

Potential energy U must be calculated by means of relation (8) in harmonic case and 

applying the tight binding approximation, only the impact of nearest neighbours is taken into 

account (such as in the case [13]).  

In this case, we consider only interaction between the nearest neighbours of each ion, that 

means that only those members in the sum (8) are nonzero indexes of which are satisfying the 

conditions s = n-1, s = n and s = n+1. Owing to (12) and (14), the potential energy of linear 

chain in the tight binding approximation can be written as: 

2 2

0 , 1 1 , 1 , 1 , 1 1

1 1 1 1

2 2 2 2
n n n n n n n n n n n n n n

n n n n

U U k z z k z k z k z z     

  
      

  
     .                          [18] 

Given the large number of ions in the chain, the solution of the problem changes only 
insignificantly if the index of each member in the last two sums in the right side of relation [18] 
will be reduced by one (i.e. 1n n  ). If we denote , 1n n nk   , then the potential energy of the 
chain [18] is: 

mi-1 mi 

d >> zi 

 

d >> zi 

 
zi 

Fig. 2 Oscillation of ions in linear chain 

mi+1 
i 
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 
2

0 1

1

2
n n n

n

U U z z                                                                                                              [19] 

and the total energy can be detrermined by the formula: 

 
22

1

1

1 1

2 2

N

n n n n n

n n

E m z z z 



    .                                                                                               [20] 

Discrete Fourier transform (DFT) of the set of functions   nz t , ion masses  nm and spring 
constatns  n can be found in the next form: 

 1
j jiq na iq na

n j j

j

z a e a e
N

  , where: ji t

j ja N A e


 , ji t

j ja N A e
  ,                                           [21] 

2
i nk

N
n k

k

m c e




 ,  
2

i nm
N

n m

m

d e





                                                                                             [22] 

for the reason of transformation of formula (20) to different representation. We expect, that 

from the Born-Karman boundary condition, it results: 

2
jq j

Na


   ,   j = 0, 1, 2, …                                                                                                        [23] 

Since it is clear that: 

j

j j j

da
a i a

dt
    ,  j

j j j

da
a i a

dt




                                                                                              [24] 

after substituting the right side of relations [21] and [22] to the formula [17], the kinetic energy 

of the inhomogeneous chain can be determined as:  

          1

2
k k j j j j k j j k j j k j j jj k j k j k j k j k

j k

W c a a a a a a a a          

          
     .                          [25] 

Similarly, if we substitutethe right side of relations (21) and (22) to the formula (19), the 

potential energy of the chain is:  

    
 

  
 

2 2 2 2
1

1 1 1 1
2

i j i j m i j i j m
N N N N

m j j j j m jj m j m j m

j m

U d a a a a e e a a a a e e
   

   
   

    

       
             

       
    

                                                                                                                                                [26] 

The total energy of vibrating ions in the chain can be determined as the sum of kinetic energy 

[25] and potential energy [26]:  

          1

2
          

          
      k j j j j k j j k j j k j j jj k j k j k j k j k

j k

E c a a a a a a a a  

    
 

  
 

2 2 2 2
1

1 1 1 1
2

i j i j m i j i j m
N N N N

m j j j j m jj m j m j m

j m

d a a a a e e a a a a e e
   

   
   

    

       
             

       
 .   

                                                                                                                                                [27] 

Taking into account:  
2

1 i nk
N

k n

n

c m e
N



   , 
2

,0

1 i sk
N

k

s

e
N



   and  
   j k j k

 
  

   ,        j k j k
 

  
  

and after re-index sums, the above formula (27) can be formally rewritten as: 

 
22 2j j j jk j j j j k

j j k

E m a a m a a     


    ,                                                                        [28] 

where:    

 
2 2

1
2 1 1

2

i j i j k
N N

k j j k j jj k j k

j k

D a a a a a a e e

 


 

  

   

  
          

  
                                [29] 

and:          
4

k
jk j jj k j k

j j

C
a a a a

ma a
  

  
   .                                                                             

[30] 



77 
 

Constants Ck and Dk are determined by means of the inverse discrete Fourier transform of ion 

masses  nm and spring constatns  n :      
2

0

1 i nk
N

k n k ,

n

C m e m
N



   , 
2

0

1 i nk
N

k n k ,

n

D e
N



    , with: 
1

1
N

n

n

m m
N



  ,    
1

1
N

n

n
N

 


  .      [31] 

We used here a simplified discrete 1D model of crystal for description of lattice vibrational 

energy. Some important features of acoustic waves can be analzyed on the basis of the result 

observed in case of such 1D polyatomic chain. The behaviour of energy of vibrating lattice can 

be studied. There is an apparent analogy of our results [28] with the formula [3]. Next, we can 

study the effects of structural inhomogeneities produced by the quantization of vibrational 

degrees of freedom in the crystal lattice. A straightforward extension of this methodology can 

be the calculation of vibrational excitations. 

 

6. CONCLUSION 
 

In order to study the effect of foreign ions on the acoustic phonon dynamics in linear chain 

of ions, we implemented quantization to the calculation of energy of the chain. The result [28] 

shows that the total energy of the vibrating lattice can be written as superposition of three 

contributions which correspond to the concept of phonons. The first of them is characteristic 

for unperturbed medium. The second and third contributions are generated by the presence of 

foreign ions in the chain. Matrix elements jk reflect the mass of foreign ions, and parameter 

is related to the interatomic forces acting in the structure.  

Next, we intend to investigate the mechanism of acoustical excitation in nanostructures and 

discuss the possible influence of local lattice defects on the phonon assisted phenomena. For 

calculation of different macroscopic characteristics of nanostructures, such as thermal and 

electrical conductivity, heat capacity, etc., it is required to know the spectral density of the 

phonon mode distribution, e.g. phonon density of states. It can be expected on the basis of our 

result that local inhomogeneities change the shape of the dispersion curves of phonons both 

quantitatively and qualitatively.  

For example, the lattice thermal conductivity  can be estimated using the kinetic theory 

of gases [28, 29]: 

21 1

3 3
ph phCv L Cv   , 

where C is the heat capacity per unit volume, vph  the mean sound velocity of the phonons, L  

the mean free path of the phonons, the phonon relaxation time. Just the thermal capacity C 

depends on the acoustic phonon modes as can be seen from Deby`s theory. Therefore, C could 

be influented by local perturbation of structure. Our results can be useful for understanding the 

contribution of the phonon dispersion in the thermal conductivity of ultra-thin layers, as well 

as in the design of efficient thermal management and thermoelectric devices. 
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