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Abstract 
 

The main goal of paper is a fracture analysis of the crack located in the wall of perforated 

protective tube. The 3-D FEM simulations on two models with differently oriented cracks of 

varying lengths in software ANSYS were performed. Influence of steady-state temperature 

field on the fracture parameters was also investigated. 
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Introduction 
 

Linear elastic fracture mechanics (LEFM) is the basic of highly simplified theory of fracture. 

It is applicable to elastic material except of the vanishigly small region at the crack tip (front) 

(4). The most widely used fracture parameters are: SIF (K), J-integral (J), elastic energy 

release rate (G) and crack tip opening displacement (CTOD). 

Stress intensity factors K are the measure of the stress-field change within the vicinity of the 

crack tip (front) for three basic modes of fracture (opening, shearing and tearing). Stress 

intensity factor has a significant role in the linear-elastic fracture mechanics. It can be 

expressed by relation 

 YaK                          [1] 

where  is nominal stress, a is crack length and Y is a nondimensional corrective function 

depending on the size and geometry of the crack, structural component and type of loading,  

which is for standard geometries published in literature (1, 2). The SIF for Mode I is 

compared against the critical value KIC to determine whether or not the crack will propagate. 

For direct calculation of K values in general objects, several crack tip local approaches have 

been developed. In the post-yield 2-D fracture mechanics (as well as for elastic fracture too) 

J-integral in (4) was introduced. It was found to characterize the stress and strain fields 

surrounding the crack tip with significant plasticity, and also to corellate with fracture 

toughness JIC (criterion of initiation) experimental results. In the simple 2-D form J around 

the counterclockwise path  is given by 
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 2,1,   
jdsundyWJ jijij                     [2] 

The discretized form of the J-integral in ANSYS is given by 

   ieii

ne
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iiij AqwWuJ ,
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11,



                       [3] 

where wi is the weight function, Aie is the area of the element ie, q is the crack-extension 

vector, W is strain energy density, nj is outward unit normal vector on integration path, ui are 

displacements and ij is stress tensor and ne is the number of elements to be integrated.  

If the thermal strains occur in the structure and the surface tractions act on crack faces, the J-

integral is expressed as 

    
C jiiiAiA iiij dsquTdAqdAqWuJ 11,11,,11,                   [4] 

where α is the thermal expansion coefficient, Ti is the crack face traction, ij is a Kronecker 

delta and C is crack face upon which the tractions act. 

For the 2-D crack problem, the crack-tip node component usually contains one node which is 

also the crack-tip node. The first contour for the area integration of the J-integral is evaluated 

over the elements associated with the crack-tip node component. The second contour for the 

area integration of the J-integral is evaluated over the elements adjacent to the first contour of 

elements. This procedure is repeated for all contours. To ensure correct results, the elements 

for the contour integration should not reach the outer boundary of the model (with the 

exception of the crack surface) (6). 
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Fig. 1 Definition of crack calculation parameters 

 

For the 3-D crack problem, the crack-tip node component is comprised of the nodes located 

along the crack front. For the 3-D problem, domain integral representation of the J-integral 

becomes a volume integration. 

For 3-D problems, J-integral can be defined at any point of crack front by line integral along 

the path  and surface integral in the domain A() as is presented in (5) 

 3,2,1)()(
)(

3,,33,   
kdAuWdsuTnWJ

A
kiikkiik                  [5] 

 

Geometry, material properties and loading of models 
 

For carrying out the analysis a problem of perforated protective tube with cracks across the 

wall thickness was chosen. The pipe geometry parameters are: outer pipe diameter 

D = 210mm, inner pipe diameter d = 178mm, lenght of pipe model L = 650mm, hole diameter 

Dhole = 32mm and wall thickness t = 16mm. The layout of holes in the tube wall can be seen 

in Fig. 2. Material of tube was 08CH18N10T with temperature dependent material parameters 

summarized in Table 1. During the nonstandard reactor operation, the different loading effects 
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are acting on protective tubes, which may cause the unacceptable tube loadings. Both 

simulation models were loaded by the bending moment 6000Nm producing maximum 

bending stresses in the crack area. Equivalent stresses computed in the specimen were under 

the elastic limit (except a small area in the vicinity of the crack). 

 

PIPE MATERIAL PROPERTIES                                                                                    Table 1 

08CH18N10T 

T       [C] 20 50 100 150 200 250 300 350 

Rp0,2  [MPa] 196 193 186 181 176 167 162 157 

Rm      [MPa] 490 477 456 426 417 382 358 333 

E       [GPa] 205 202 200 195 190 185 180 175 

A5      [%] 35 34 33 31 29 27 26 25 

 

 
Fig. 2 Geometry of tube and crack parameters 

 

In numerical analyses two locations and orientations of crack in thick-walled part of 

protective tube with various lenght of crack were considered (Fig. 3). Length of crack was 

chosen as a = (2; 3; 4; 5; 6; 8)mm in Model 1 (longitudinal crack) and as a = (1; 2; 3; 4; 5, 

6)mm in Model 2 (perpendicular crack). 

 

 
Model 1 

 
Model 2 

Fig. 3 Geometry of part of protective tube with detail of mesh in the crack front vicinity 

 

Numerical simulations 
 

Numerical simulations were carried out using ANSYS FEM software. Loading of the model 

was chosen such that deformation of the short tube model is equal to 0,2% of the full length 

tube 4180 mm. Both  models with different crack location were loaded without and/or with 

considering the effect of the temperature field in the tube. The steady-state temperature field 

caused by heating the tube up to 315 C against the reference room temperature 20 C was 
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considered. Thermal expansion coefficient  = 1,2.10
-5

K
-1

. For calculation of SIFs quarter-

point (singular) elements near the crack front and KCALC command were used. Mesh with 

high-order SOLID finite elements and CINT macro were used for calculation of J-integral 

values. 

 

Results of FE simulations 
 

In Fig. 4 the results of calculation of KI-factors at the outer tube diameter (0mm coordinate in 

thickness), inner tube diameter (16mm coordinate in thickness) and in the middle of tube wall 

(8mm coordinate in thicknees) for both models are presented. Maximum values of KI-factor 

were identified on the outside of the tube with perpendicular crack (Model 2).  In Model 1 

with longitudinal crack was maximum of KI obtained at inner surface of the tube. Results of 

KII- and KIII-factors calculation for the considered type of loading achieved values less than 

1% of KI and therefore are not presented here. 

Graphs on the left present results of numerical analyses without influence of temperature. 

Graphs on the right of figures show results obtained when the steady-state temperature field in 

the tube is considered. 

 

Model 1  

  
Model 2  

  
Fig. 4 Values of KI factor along the crack front at inner, middle and outer tube radius 

(0mm corresponds to the outside surface of the tube, 16mm corresponds to the inside surface of the tube) 

 

Fig. 5 shows distribution of J-values along the crack front. Only selected results obtained by 

contours in circular pattern of the mesh (contour 1, 3 and 7 only) are presented. The 

advantage gained from calculating the J-integral is the use of regular finite elements instead 

of singular elements necessary for determining of K-factors. 
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Model 1  

  

  

  

Model 2  
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Fig. 5 J-values along the the crack front for different crack lengths 

 

Generally it can be concluded that the increase in temperature causes an increase in the value 

of J-integral. Maximum values of J-integral along the crack front length (thickness) in Model 

1 were obtained on near middle of the tube wall thickness, however, for Model 2 maximum 

values of J-integral were localized on the outer surface of the tube. 

Fig. 6 shows the dependence of the maximum value of equivalent stress eqv in crack front on 

the crack length a for both models with and without considering the effect of temperature 

field. The value of maximum equivalent stresses are, contrary to expectations, lower when 

considering the impact of temperature field than in the case without the effect of temperature. 

This decrease is approximately 1,5% and is caused by change of the elastic modulus with 

temperature. 

 

  
Fig. 6 Maximum values of equivalent stress eqv in the crack front for different crack lengths 
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In Fig. 7 the typical distribution of principal stresses 1, 2 and 3 and equivalent (Mises) 

stress eqv near the crack front for selected cases is presented. 

 

  

  
Fig. 7 Typical stress (principal and equivalent stresses) distribution around crack front  

(sectional view - Model 2, a = 2mm, temperature field included) 

 

Conclusion 

 

The paper presents the results of determining the two fracture parameters (SIFs, J-integral) 

used to assess the stability of 3-D crack. Results of K-factors strongly depend on element size 

in the crack front vicinity. Unlike the approach which employs singular quarter mid-nodes 

and uses the crack tip (front) displacement field to calculate the stress intensity factors, the 

ANSYS CINT macro is very mesh density sensitive, but the stability is superior. Numerical 

investigation of the J-integral have shown that the near field contour integral loses its path 

independency, every other fits the J better. Out of structured mesh with circular pattern (when 

contour order exceeds a pattern division), a divergence appears. The results calculated using 

CINT are almost independent of mesh pattern diameter and of number of divisions as well as 

of size of element outside. 

Under complex loading, presented 3-D fracture analysis gives representative information on 

the defect behavior. The numerical analysis allows to determine accurately the proces of 

fracture and consequently to improve the safety of power equipment. 

 

References: 

 

1. BARSOM, J.M., ROLFE, S.T. 1987. Fracture andfatigue control in structures application 

of fracture mechanics. 2nd. ed. Englewood Cliffs, New York, Prentice Hall. 



18 

 

2.  TADA, H., PARIS, P.C., IRWIN, G.R. 1973. The stress analysis of cracks handbook. 2nd. 

ed. St.Louis, Paris. 

3.  NEWMAN, J.C., RAJU, I.C. 1980. Stress intensity factors for internal surface cracks in 

cyllindrical pressure vessels. Trans. J. Pressure Vessel Technology, ASME, 102. 

4.  RICE, J.R. 1968. A path independent integral and the approximate analysis of strain 

concentration by notches and cracks. J. Appl. Mech., 35, 379-386. 

5. CHIARELLI, M., FREDIANI, A. 1993. A computation of the three-dimensional J-integral 

for elastic materials with a view to applications in fracture mechanics. Eng. Frac. Mech, 

44, 763-788. 

6.  OMER, N., YOSIBASH, Z. 2005. On the path independency of the point-wise J integral in 

three-dimensions. Int. J. of Fracture, 136, 1-36. 

7. ANSYS Theory manual, release 14.5.7, 2013. 

 

 

Reviewers: 

 

prof. Ing. Ladislav Gulan, PhD. – Institute of Transport Technology and Engineering Design, 

Faculty of Mechanical Engineering STU in Bratislava  

doc. Ing. Ľubomír Čaplovič, PhD. – Institute of Materials Science, Faculty of Materials 

Science and Technology STU in Trnava 

 

 

Acknowledgement 

This publication is the result of implementation of the project: “Increase of Power Safety of 

the Slovak Republic” (ITMS: 262220220077) supported by the Research & Development 

Operational Programme funded by the ERDF 

 

         
We support research activities in Slovakia. The project is co-financed by the EU. 

 


