

90

RESEARCH PAPERS

FACULTY OF MATERIALS SCIENCE AND TECHNOLOGY IN TRNAVA

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA

2013 Special Number

BUSINESS APPLICATIONS ARCHITECTURE MODEL BASED ON

SOFTWARE PRODUCT LINE APPROACH

Zdravko ROŠKO

ABSTRACT

Software product line architecture is one of the most important artifacts defined at the

early stage of a product line development process. Since the rest of the products are

developed based on the initial product line architecture, it is of high importance to ensure the

architecture stability by enabling the software’s evolution possibilities. Industrial evidence

shows that companies spend more resources on maintaining and evolving their architecture

and products than on the initial development of them. Hence, there is a need for flexible

software architecture that stays stable as the requirements evolve. In this paper we propose a

structural model, some architecture quality metrics, case-based reasoning methodology to

predict the architectural stability and a feature model for business applications. The goal of

the proposed architecture model is to develop a framework for business applications

development and evaluating the stability of product line architectures in the face of changes

in requirements.

KEY WORDS

software product lines, feature model, architecture, case-based reasoning, metrics

INTRODUCTION TO THE PROBLEM

Software reuse is the process of creating software applications from existing artifacts

rather than building them from the scratch. Effective reuse requires a strategic vision that

reflects the unique power and requirements of this technique [1]. There are many software

engineering technologies that involve some form of software reuse such as: application

frameworks, design patterns, components, application generators, etc. Many organizations

employ these technologies, and many are ready to take the next step towards more effective

reuse of software.

Software product lines (SPL), in which; requirements, architecture, modeling and

analysis, components, test cases, test data, test plans, documentation templates, and other

software engineering artifacts, can be reused over a number of applications, is at the moment

the most promising form of the software reuse [2]. SPL is defined as a set of software-

intensive systems, sharing a common, managed set of features that satisfy the specific needs

Zdravko ROŠKO – Adriacom Software Inc., Stablinac 4/58, Vodice, Croatia, zrosko@gmail.com

91

of a particular market segment or mission and that are developed from a common set of core

assets in a prescribed way [3]. SPL development process consists of domain engineering

process, (core assets development for reuse) and application engineering process (product

development with reuse) that builds the final products, where construction of the reusable

assets and their variability is separated from production of the product-line applications. SPL

is mostly used by organizations that develop software for mobile phones, cars, electronic

instruments, while information systems domain is not often considered as a potential base for

developing SPL. Successful product lines have enabled organizations to capitalize on

systematic reuse to achieve business goals and desired software benefits such as productivity

gains, decreased development costs, improved time to market, higher reliability, and

competitive advantage [4]. Considering the costs, as stated by [5] SPL offer benefits when

producing at least a certain number of products. Figure 1 (partially taken from [5]) illustrates

the costs and distinct stages of producing one versus multiple products from the same product

line. The solid line sketches the costs of developing the products independently, while the

dashed line sketches the costs of developing the products using software product line

engineering approach [6]. The figure shows the case when less then four products are

spawned from the same product line, where the price of product line engineering is relatively

high, and the case whereas it is significantly lower for larger quantities of products being

spawned from the sample product line [6]. There is a break-even point, we call it „SPL early

stage end“ at which the two lines intersect. It indicates that the costs are the same for both

cases. As referred in [5] recent empirical experiences have shown that this break-even point is

located at around 3 or 4 systems in the particular case of software engineering.

1

2

3

4

5

6

Effort

1 2 3 4 5 6
Number of

products

Single product

Product line

Lower costs

per product

SPL

Early

stage

end

SPL

Early

stage

start

Fig. 1 Costs of a SPL development

Business applications are a kind of software that is used by business users to perform

various business functions. Most of the business applications are interactive, they interact

with a user through a user interface in order to read, process or change some persistent

business data. The SPL for interactive applications defines, product line requirements, a

software architecture and a set of reusable components. The existing frameworks such as

Spring may sound like a solution for the problem, however it does not impose any specific

programming model, it does not address all possible interfaces needed and it may lack a

certain up to date features. Hence, making a product line architecture dependent on externally

developed artifacts with not enough power to replace or change some of the key architecture

features, is not a solution. One of the most important parts of a SPL is its architecture (PLA).

The PLA plays a central role at the development of products from a SPL as it is the

92

abstraction of the products that can be generated, and represents similarities and variabilities

of a product line [7]. The PLA must consider the needs of the complete set of products in

order to provide a framework for the development and reuse of new assets. These new assets

have to be conceived with the required flexibility in order to satisfy the needs of the different

products in the SPL [6]. PLA consist of frameworks (Szyperski., 2002) as core assets, whose

design captures recurring structures, connectors, and control flow in an application domain,

along with the points of variation explicitly allowed among these entities [7]. In this paper we

use the term „SPL platform framework“ to represent the implementation of the generic

architecture and components which are not business-specific but rather generic in the sense

that they can be used by more than one business domain such as: banking, insurance,

manufacturing, and etc. We propose a business application architecture model which

includes:

 Business applications entities structural model

 Feature model for business applications

 Some „SPL Platform Framework Responsibility“ metrics for SPL stability

 Case-based reasoning methodology used to predict the architectural stability

BUSINESS APPLICATIONS ENTITIES STRUCTURAL MODEL

Today's interactive business applications consist of the three logical layers which have a

distinct and specific responsibility: presentation, business logic and data access logic.

Presentation layer's function is an interaction with the application's users which includes:

various rendering of the data, data edits, data validation and formatting, data inter-dependency

checks, and other user initiated actions. Business logic layer function is to process data

entered by a user and/or data retrieved from the persistence data source. Business logic should

stay free from dependencies on various data sources and let the variability mechanism of SPL

to choose among different data sources. Data access logic layer function is to handle all

interactions with the persistent data sources. The layered model does not imply that each layer

should be in a separate address space, even thought in today’s business application‘s

environment the most of the time a three-tier model is used. Control and data can flow in both

directions in layered systems. However, lower layers must not depend on functions provided

by higher layers. Such a design avoids accidental structural complexity, and supports the use

of lower layers in other applications independently of the higher layers [8]. Table 1 shows that

business domain specific components shared among different products spawned from the

same product line are not a part of the SPL platform framework, but rather are part of the

business-specific components but still belong to the domain engineering process.

PROPOSED PLA STRUCTURE Table 1

Prod 1 Prod 2 Prod 3 Prod 4

Business-specific components

SPL Platform Framework (common services)

External Components

OS/Language Environment

The structural model is the framework through which components, attributes, and inter-

relationships within the system are expressed [9]. The structural model enforces a consistency

in the business applications structure by a set of constraints (e.g., the way a data is passed

between layers, organization of the source code, the relationship between the source code

93

pieces). The Figure 2 shows the structural model for business applications we propose. The

proposed model specifies: the kind of entities that will exist in the design (how do we package

the entities), how the real world product (application) is mapped to the software entities (what

is in a package) and the dependencies between the entities (how do packages relate to each

another). Given a fact that most of the business applications are composed from a client part,

which may be run in a separate address space, and a server part which may be run within an

application server on the other address space, we assume that some of the software assets are

shared between the two.

Client resources include the entities which are used by client part of an application while

server resources include the entities used by server part of an application. Shared resources

are the entities which are shared by client and server parts of an application. This structure

does not impose a separation of client and server to the two separate address spaces, but

indeed represent a variation point which can be used to compose an application as a one part

to be run in one address space or as a two separate parts to be run in two distinct address

spaces. The Figure 2 shows 13 distinct dependency relationships among different SPL

structural entities. As we will show later some of them will be used as elements of the new

proposed metric for stability of SPL platform framework.

PRODUCT PLATFORM

CLIE
NT

SHARED

SERVER

ENVIRONMENT

COMPONENTS

EXTERNAL

COMPONENTS

1 234

6

5

7

8

9
10

11

12
13

C

L

I

E

N

T

P

A

R

T

S

E

R

V

E

R

P

A

R

T

Uses

Inherits

Platform

Server

Client

Fig. 2 Proposed structural model and dependencies

FEATURE MODEL FOR BUSINESS APPLICATIONS

Features are important distinguishing aspects, qualities, or characteristics of a family of

systems [10]. Features are use to depict the shared structure and behaviour of a set of similar

products. Feature model for business applications is used for representing the possible

configuration space of all the products of a product line in terms of its features. Business

applications feature model is composed from the client and server models. Feature model for

client (Figure 3) captures variability and commonality between the features of the different

products available in a given domain.

94

Fig. 3 Client feature model

Figure 4 shows server feature model. Not all possible configurations of the server

features produce a valid server part of an application. For instance, a configuration of server

part of an application that uses EJB as a type of business objects cannot use a non EJB

transaction feature. Such restrictions are expressed in the form of integrity constraints. An

example of these constraints is: Business Object EJB EXCLUDES XYZ Transaction. These

constraints ensure the correct composition of product features in the various final business

applications developed from this feature model.

Fig. 4 Server feature model

PLATFORM FRAMEWORK RESPONSIBILITY METRICS

Software metrics to measure quality attributes of an architecture such as “Design

Quality” metrics [11], metrics to measure structural soundness of product line architecture

[12], PLA metrics [13], and complexity metrics for software product line architectures [7] do

not address the quality of SPL platform framework responsibility. Within the context of SPL

for business applications which is based on generic components, early indicators of the

software product line architecture (PLA) quality attributes can be used in order to avoid low-

quality products during the later stages of product development [14]. We propose a „SPL

Platform Framework Responsibility“ metrics which can be used as an early indicator of the

future product's quality. A platform framework, is a group of components and services that

provide a coherent set of functionalities through inheritance, interfaces and specific design

patterns. The application development process should be concerned with the business

requirements rather than with the low level APIs or external component's interaction rules.

Platform framework needs to ensure the application development process independence by

taking the responsibility to interact with external third-party components. By external

components we refer to a non-development components developed by a third party

organizations and used by the SPL platform framework or by a products spawned from it,

illustrated in Figure 5. Referencing an external component directly from a business

application product, makes the product less stable and harder to develop or change. The more

external components a product relies on, the larger the likelihood to misunderstand or misuse

95

some of these services. Therefore, the product is more difficult to understand and develop,

and thus likely to be more fault-prone. The product line platform framework should take as

much as possible of the responsibility to interact with external components. We propose a five

simple and intuitive architectural metrics as a measurement for SPL platform framework

quality based on architectural elements dependency [14].

1

Used Dependency

Environment

(rt.jar)

External

Components

SPL Products

SPL Platform

2

3

4 51

2

n

Not used

Fig. 5 SPL Platform Framework Metrics

As illustrated in Figure 5 there are 5 distinct high level dependency metrics of an SPL

for business applications. SPL platform depends on its environment such as Java or .NET and

on a number of external third-party components, while SPL products depend on its platform

framework its environment and on a third-party external components. The proposed „SPL

Platform Responsibility“ metric use the three dependencies metrics (Figure 5): D3: „Platform

Afferent Coupling“ - the number of distinct references outside the platform that depend upon

classes within the platform, D4: „Product Efferent Coupling“ - the number of distinct

references inside the product that depend upon classes within environment components (e.g.

Java RTE), D5: „Product Efferent Coupling“ - the number of distinct references inside the

product that depend upon classes within external components. We can calculate the Platform

Responsibility (PR) for a product line platform framework through the following equation:

The PR can be calculated for each product or for all of products spawned from the

product line. PR = (D4+D5) / (D3+D4+D5): The range for this metric is from 0 to 1, where

PR=0 indicates that SPL platform used by product makes the product more stable and

protected from frequent changes to the external third party components, while the SPL

platform serves the product by taking the responsibility to interact with external components.

PR=1 indicates a completely irresponsible SPL platform.Table 4 shows the calculation of the

PR for three products (P1, P2, P3).

 MULTIPLE PRODUCT PR CALCULATION

 Table 2

 D3 D4 D5 PR

P1 4 3 3 0,60

P2 4 3 0 0,43

P3 4 0 0 0,00

Total 12 6 3 0,43

96

The proposed metrics may be analyzed within the framework of measurement theory

such as the Distance framework [15] and framework based on desirable properties which

serves guidance provided to define proper measures for specific problem [16].

CASE-BASED REASONING USED TO PREDICT THE STABILITY

Predicting product design stability of software product lines for business applications,

i.e., the ease with which a product evolves while it's design remains stable, can be used in

order to plan product maintenance activities during the later stages of product's existence. A

well designed product spawned from a software product line inherits most of the

characteristics from the SPL platform framework but it also shares many similarities between

other products. Product stability is a complex measure and its prediction is of high importance

for any software maintenance planning. We propose an approach that uses the case-based

reasoning (CBR) and k-nearest neighbour (k-NN) technique to predict the product stability.

The application engineering process that uses and apply the stability prediction will help

ensure that final product's maintenance is planned by using the most closest and similar cases

from the historical case-library. Since there is a lack of knowledge about software evolution,

we believe that CBR is an appropriate approach to the business application stability prediction

problem. We hypothesize that two products (business applications) which show same or

similar characteristics will also evolve in a similar way. Case repository for applications and

its versions needs to have an appropriate structure which will enable the stability prediction.

We propose to use the dependencies metrics explained earlier and a set of structural software

metrics. Each metrics may be assigned a weight calculated by assigning the importance factor

to each metric.

CONCLUSION

In this paper we propose some parts of an architecture model for software product lines in

the field of information systems. We propose an entities structural model, feature model for

business applications, a new metrics for measuring the „responsibility“ of a common platform

framework and a case-based reasoning approach for predicting the stability of an architecture.

Our future research is directed at the design of a complete architecture model based on a case

study to help reduce the effort to maintain business applications.

REFERENCES

1. The Institute of Electrical and Electronics Engineers, „Guide to the Software Engineering

Body of Knowledge,“ 2004. p. 120.

2. Z. ROŠKO. 2012. Strategy Pattern as a Variability Enabling Mechanism in Product Line

Architecture.

3. L. N. Paul Clements, Software Product Lines: Practices and Patterns, 3 ed., Westford,

MA: Addison-Wesley Professional, 2001, p. 608.

4. V. S. S. P. Kyo C. 2011. Kang. Applied Software Product Line Engeenering. Taylor and

Francis Group, p.

5. G. B. a. F. J. v. d. L. Klaus Pohl. 2005. „Software Product Line

Engineering:Foundations, Principles and Techniques,“ Springer-Verlag, pp. 12, 14, 15,

46, 62, 156, 157.

97

6. C. PARRA. 2011. Towards Dynamic Software Product Lines: Unifying Design and

Runtime Adaptations.

7. M. G. J. C. M. Edson A Oliveira Junior. 2001. Empirical Validation of Variability-based

Complexity Metrics for Software Product Line Architecture.

8. K. H. D. c. S. Frank Buschmann. 2007. Pattern-Oriented Software Architecture, zv. 4, p.

187.

9. J. Robert G. Crispen and Lynn D. Stuckey. 1994. STRUCTURAL MODEL: Architecture

for Software Designers.

10. K. K. K. &. L. J. Lee. 2002. Concepts and guidelines of feature modeling for product line

software engineering. Lecture Notes in Computer Science, pp. 62,77.

11. R. MARTIN. 1994. OO design quality metrics. An analysis of dependencies.

12. Rahman. 2004. Metrics for the Structural Assessment of Product Line Architecture.

13. N. M. a. A. v. d. H. Ebru Dincel. 2002. Measuring Product Line Architectures. Software

Product-Family Engineering, pp. 151-170.

14. Z. ROŠKO. 2013. Assessing the Responsibility of Software Product Line Platform

Framework for Business Applications. CECIIS.

15. G. a. G. D. ". a. f. f. s. m. c. D. R. R. 9. (. 1.-4. Poels, DISTANCE: a framework for

software measure construction. DTEW Research Report 9937, pp. 1-47, 1999.

16. L. C. S. M. a. V. R. B. Briand. 1996. Property-based software engineering measurement.

Software Engineering, IEEE Transactions on 22.1, pp. 68-86.

17. „An Industrial Case Study of Product Family Development Using a Component

Framework“.

18. K. S. E. R. Frank van der Linden. 2010. Software product lines in action, the best

industrial practice in product line engineering. Springer, p. 8.

19. D. G. Ebrahim Bagheri. 2011. Assessing the maintainability of software product line

feature models using structural metrics.

