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SINGULARLY PERTURBED LINEAR NEUMANN PROBLEM
WITH THE CHARACTERISTIC ROOTS
ON THE IMAGINARY AXIS

Cudmila VACULIKOVA, Viadimir LISKA

Abstract

We investigate the problem of existence and asyimgtehavior of solutions for the
singularly perturbed linear Neumann problem

ey +ky=f(t) k>0,  0< e<<1 tO(ab)

y(@)=0 y(b)=0.
Our approach relies on the analysis of integral &ipn equivalent to the problem above.
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I ntroduction

In this paper, we will study the singularly perteddinear problem
gy"+ky=f(t), k>0,  0< e<<1 fOC%(ab) (1.1)

with Neumann boundary condition
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We can view this equation as a mathematical moflehe® dynamical systems with
high-speed feedback. The situation considered Ikereomplicated by the fact that a
characteristic equation of this differential eqaatihas roots on the imaginary axis i.e. the
system be not hyperbolic. For hyperbolic ones tyreacdhics close critical manifold is well-
known ( see e.g. [1], [3-10] ), but for the non-bgimolic systems the problem of existence and
asymptotic behaviour is open in general and leadté substantial technical difficulties in
nonlinear case [2]. The considerations below mawysieuctive for these ones.

0
n=0"

g, - 0" such thaty, (t)
converges uniformly tau(t) on <a,b> where y. is a solution of problem (1.1), (1.2) ands

()
.

We prove, that there exist infinitely many sequm{:q}

a solution of reduced problem (when we put0 in (1.1) ) ku= f(t) i.e. u(t) =
We will consider for the parameter the set, only,

I :<k((n+b1;:—/1]2' k(nt;;a/1f> n= 0Lz

where A > 0 be arbitrarily small but fixed constant which guatees the existence and
uniqueness of the solutions of (1.1), (1.2).

Example. Consider the linear problem
ey +ky=¢€', k>0 0< £<<1 tO(ab)

y(@)=0. ylb)=0.

—ed CO{\/E (b —t)} +e° cos{\/E(t - a)} .
\/E(k”)Si”NE(b—a)} Tkre

g, 0J, the solution of considered problem

& +ol/z)

n

and its solution

y.(t) =

00
n=0"1

y,, (t)=

Hence, for every sequenéen}

t
converges uniformly fon — o to the solution ul(t) :% of the reduced problem of@,b).

The main result of this article is the followingeon

Main result

00
n=0"1

Theorem. For all f DC3(<a, b}) and for every sequen({en} g, 0J, there exista
unique solutiony, of problem (1.1) , (1.2) satisfying

Yy, — uuniformly on (ab) forn - e
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More precisely,

y., () =ult)+olye,) on (a.b)

Proof. Firstly, we show that

y.0)= COSNE& ] a)} | SW b- )}f()dj{\/? (- ﬂf()
\/Esin{ E (b—a)} 2 E

Is a solution of (1.1) , (1.2). Differentiating {2 twice, taking into consideration that

9 1u(19 905=220 a5+ 010

ds (2.1)

we obtain

y.(t)=-

(2.3)

From (2.3) and (2.1) after a little algebraic agament, we get

o kCy ).t
ys_g( y£)+ £

l.e. y. is a solution of differential equation (1.1), @noim (2.2) it is easy to verify that this
solution satisfies (1.2).

Let t, O(a,b) be arbitrary, but fixed. Denote Hy and 1, the integrals
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Then

Integratingl, and |, by parts, we obtain

wecos [fo-9) 0= 1E)
o
s

el Ees -l
Hf S}g

I, =
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} -jﬁ co{\/g(to—s)}%(s)ds
y.(t,) = f&O);:n\/E(:__;} [si {\/E(b—s)}%(s)ds—zco{\/g(to—s



ys(to)_ f(tO) <

o)l L Esin{\/g(b—s)}f'(éds iIcos{\/E(to—s)}f’(éds.

+ =
The integrals in (2.4) converge to zero fer £,,£,0J,,,n - o
Indeed, with respect to assumption én we may integrate by parts in (2.4). Thus,

NN
5 J% (| (o) +| £ (o) + j COSNE (b- s)} f"(s)d% 5
sﬁ{w'(aw'(bwﬁ (el to-2) (29

e T St
ool
< JEli @ E el ) e so-al) (29)

where = Ij§<u|[|3|1‘( ) and u, = sup| f(t).

(2.4)

Substituting (2.5) and (2.6) into (2.4), we obtama priori estimate of solutions of (1.1),
(1.2) for allt, O(a,b) of the form

R UG RGN OIS
+%\/§{|f’(a)|+\/%(ul+| f(a)+ ,uz(b—a))} (27)

Because the right side of the inequality (2.1ha@ependent o, the convergence is
uniformly on(a,b). Theorem holds.

Remark. As remark we conclude that in the c|af§éa] =| f (b)| =0, the convergence rate is
O(e,),£,0J,, as follows from (2.7).
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Conclusion

In our contribution, we determined a convergente oathe solutions of a certain class of
the singularly perturbed differential equationsjeabto Neumann boundary conditions to the
solution of a reduced problem as a small parametatr highest derivative tends to zero.
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