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Introduction 

At present, it is popular to implement artificial intelligence in all technical devices 

wherever possible. The first prerequisite for using artificial intelligence is enabling data 

collection in the application domain. Based on this data, it is possible to create datasets and 

solve specific problems using AI algorithms, particularly deep neural networks. Such 

a position for artificial intelligence is reasonable. 

Considering the European Commission’s suggestion, which identified Artificial 

Intelligence technologies as key to the development and business competitiveness in the 

upcoming years [1]. The European Commission also considers Artificial Intelligence the 

most critical component of the Fourth Industrial Revolution. The European Commission 

estimates that the deployment of AI in key sectors of the European Union economies will 

increase the value of GDP by 1.8% by 2025. In the long term, the estimated impact of the 

implementation of AI in key industries is estimated to result in a cumulative increase in the 

contribution to GDP of 13.5%, depending on the industry [2]. Artificial intelligence (AI) is 

anticipated to have a significant positive influence on the manufacturing industry, 

particularly in the areas of the Industrial Internet of Things (IIoT), mobility, and intelligent 

healthcare. 

Artificial Intelligence (AI) has increasingly become an integral component within 

various industrial sectors, offering innovative solutions and significant advancements in 

operational efficiency. Initially, its unique capacity for data interpretation, pattern 

recognition, and predictive decision-making has transformed traditional business models and 

strategic approaches. 

The transformative potential of Artificial Intelligence for reshaping future industrial 

processes is considerable and, indeed, compelling. Significantly, AI is anticipated to enhance 

efficiency, productivity, safety, and decision-making prowess within industrial contexts. 

Concurrently, supply chain and logistical sectors have benefitted immensely from 

AI’s ability to optimise routes, accurately forecast demand, and improve inventory 

management systems. On a larger scale, AI is an essential component in the paradigm of 

Industry 4.0, providing the underpinnings for smart factories through autonomous systems 

and interconnected devices. 

As of now, the field of deep learning has achieved impressive success in many visual 

recognition tasks. Undoubtedly, all progress achieved in this research area has been 

conducted with high computational expense and memory-intensive processes. This 
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condition has resulted in the unfeasibility of devices to deploy deep learning models on 

devices with limited computation resources due to strict requirements. Specifically, 

convolution neural network models are generally over-parametrised where the model size 

exceeds the size of the training dataset. Therefore, a model that is neither over-parameterised 

nor under-parameterised but has a reasonable number of parameters represents the suitable 

solution for a task. As we have already stated, overparameterised neural models, which have 

many more parameters than necessary to solve a particular problem, entail a certain degree 

of redundancy. The existence of redundancy enables the application of neural network 

compression techniques. By compressing these models, it has the potential to significantly 

reduce their size without a significant decrease in model performance.  

Consequently, it paves the way for research and exploration in this area. This research 

gap is of particular interest because it opens up the possibility of implementing deep neural 

networks on devices where this has been possible only with limitations. 

Based on the presented motivation and the high relevance of the subject of Artificial 

Intelligence in this thesis, we have discussed the problem of reducing neural network models 

and resource-constrained devices with the potential for use in Industry 4.0 applications. 
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1 Objectives of the dissertation thesis 

The aim of this dissertation can be summarised in the following points: 

1. Elucidate the concepts of neural networks, machine learning, and deep learning. 

2. Assess different compression techniques for deep neural networks. 

3. Investigate the implementation of power-constrained devices within the Industry 4.0 

paradigm. 

4. Employ selected compression approach and propose an innovative strategy for 

training neural network. 

The first objective of the dissertation was to clarify the concept of artificial 

intelligence, machine learning and the concept of neural networks. In the first part of the 

thesis, the aim was to introduce the problem of artificial intelligence. Next, in this part of the 

chapter, we focused on an essential subfield of machine learning, namely deep learning. We 

then established the definition of deep learning and explained the motivation behind deep 

learning and deep neural networks. Then we described the different categories of deep 

learning techniques, namely discriminative, generative, and hybrid learning. The next topic 

we addressed in this chapter was a detailed explanation of the basic concept of neural 

networks. In addition, we explained the basic concepts of neural networks and discussed the 

description of the essential components of neural network architecture. In addition, concepts 

such as weights, bias, neuron, and activation function and their role have been described. 

Subsequently, the basic concept of the neural network learning process, represented by two 

algorithms, was discussed. First is the Forward Pass, and second is the Backpropagation 

algorithm. Finally, the learning process was demonstrated on a complex example of forward 

transition and backpropagation computation. Then, some basic neural network training 

techniques were identified to serve as a prevention against neural network overlearning. 

The second objective of this thesis was to conduct a literature review of neural 

network compression techniques. Particular emphasis was placed on two specific methods: 

pruning and quantisation. The theory underlying the complexity of neural network 

compression and the theory associated with the specific methods were also explained in 

detail. This comprehensive approach allowed a deep understanding of the topic and laid the 

foundation for further study in the field of neural network compression. In this thesis, the 

theoretical concepts underlying the various compression techniques have been elucidated in 

addition to a comprehensive literature review. In the case of pruning, the fundamentals were 

explored in detail, allowing for a deep understanding of this particular technique, also in the 
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case of quantisation. A detailed review was given of the different types of quantisation, 

namely uniform and non-uniform. This theory analysis and a review of the existing literature 

have played a key role in forming a comprehensive view of neural network compression. In 

addition, the significant differences inherent in each technique have been described in detail.  

The third aim of this thesis was to explore the potential of resource limited devices 

as part of the Industry 4.0 paradigm. Then, we discussed resource constrained embedded 

devices. After this, we focused on the importance of deep learning technologies and their 

current deployment in various industrial applications. Subsequently, we explained the 

importance of these devices in the context of deep learning and artificial intelligence in 

general as part of modern industrial processes. We then reviewed potentially suitable devices 

for application using deep learning. To address this, we presented methods and hardware to 

enhance the effectiveness of deep learning. Finally, we focused on the procedures involved 

in applying the quantisation technique and examined the hardware parameters of a particular 

device. Special attention is provided to Industrial IoT- IIoT devices and IoT devices designed 

to work with Artificial Intelligence - AIoT. We explained their application potential in the 

industry and the position of these devices in the role of IoT, IIoT and AIoT and discussed 

their application possibilities. We concluded that devices that would meet industry standard 

designs in terms of design and have hardware would greatly benefit industrial processes. In 

particular, they would significantly enhance the Edge Computing paradigm, which is part of 

the Industry 4.0 concept. As a result, these resource-constrained devices can be placed in a 

different category, namely AIoT. We have also peripherally mentioned the potential of 

power-limited devices for SMEs concerning their specific business needs. 

This dissertation’s fourth and final objective was to propose a neural network training 

strategy to improve the training process in the neural network quantisation problem. First, 

we proposed a modification of the neural network training process, with the addition of an 

index, that uses data from the original neural network during the training of the quantised 

neural model. This method is based on statistical methods to compare the distribution of the 

weights of the original and quantised models. This information is then provided during 

training the quantised model as an indicator that can be further manipulated. We then discuss 

the possibilities of comparing the distribution of weights in the context of neural network 

training and its quantisation.  
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2 Artificial intelligence 

Artificial intelligence, also called machine intelligence, is the ability of the computer 

to simulate the human ability to solve problems based on mathematical rules while using 

computational power thorough the programming language. In other words, AI can be 

a number of explicitly programmed if-then statements or complex machine learning model 

mapping sensory data as input from, for example, an electric device. The study of knowledge 

engineering is an essential aspect of AI research. Software needs to have bountiful 

information related to the world, with often an expectation to be precise in decision-making 

like human beings. AI must have access to properties, categories, objects and relations 

between all of them to implement knowledge engineering. AI initiates common sense, 

problem-solving and analytical reasoning power in machines, which is more complex and 

tedious [3]. Figure 1 shows subfields of artificial intelligence. 

 

Figure 1 Field of artificial intelligence [4] 

2.1 Neural networks’ basic concept 

The concept of a neural network was inspired by the neuron cell in the human brain. 

A neuron is a core component of the human neural system [5]. Information is transmitted 

via a structure called the synapsis, which enables the transmission of neural signals from one 

interconnected neuron to another. Neurons have four essential functions: receiving 

information, transmitting information, storing information and communicating signals to 

target cells. It is particularly important to realise that artificial neurons do not function in the 

same way as biological neurons. The idea is inspired by triggering the neurons but is not 

identical to it. 



Offprint of Dissertation Thesis  Ing. Roman Budjač 
 

10 

The core idea behind neural networks is to develop a computational model that 

emulates the structure and functionality of biological neural networks, such as those present 

in the human brain. The primary objective is to empower machines with the ability to learn, 

identify patterns, and make informed decisions or predictions using input data [6]. A neural 

network comprises multiple interconnected layers of artificial neurons or units, also called 

nodes. Each neuron accepts data inputs from its antecedent neurons in the neural system. 

Following data processing, the neuron conveys the resultant output to the succeeding layer 

within the network. The connections between neurons are characterised by weights, which 

dictate the intensity of influence that one neuron exerts on another. Neurons employ 

activation functions to apply the non-linearity concept to the model, allowing neural 

networks to learn intricate patterns and relationships within the data. The functions 

mentioned previously are utilised to operate on the summation of inputs, weights, and biases 

that have been accumulated within each neuron. This process finally decides the output that 

will be released and transmitted to other neurons. The learning process within a neural 

network revolves around adjusting the weights and biases based on the discrepancies 

between the network’s actual output and the desired output. This is typically achieved using 

an optimisation algorithm, such as gradient descent, in conjunction with a process known as 

backpropagation. Backpropagation computes the gradients of the error concerning each 

weight and bias by applying the chain rule, iteratively calculating the gradient from the 

output layer back to the input layer. This gained information is subsequently used to update 

the weights and biases, directly leading to minimising the overall error. Various types of 

neural networks exist. These include feed-forward networks, recurrent networks, and 

convolutional networks. A unidirectional flow of information characterises feed-forward 

networks, while recurrent networks allow feedback loops and are especially useful for 

processing sequential data. Convolutional networks are particularly suited for image 

recognition and computer vision tasks, employing convolutional layers that can 

automatically learn spatial hierarchies from the input data. Neural networks have gained 

widespread adoption across diverse fields, such as computer vision, natural language 

processing, speech recognition, and decision-making systems, owing to their flexibility and 

effectiveness in handling complex tasks. The ongoing progress and implementation of neural 

networks are propelling substantial breakthroughs in the fields of artificial intelligence and 

machine learning. 
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2.2 Deep Learning Models 

Different learning paradigms in machine learning are being recognised, including 

discriminative, generative, and hybrid learning. s an overview of each in Figure 2. 

Discriminative models achieve their results by a model architecture that accurately 

represents. the decision boundary between different classes. Examples of such 

discriminative models include Convolutional Neural Networks (CNNs) and Recurrent 

Neural Networks (RNNs) [7]. The second technique is generative. Generative models pivot 

their primary focus towards unravelling the intrinsic distribution of the data [8]. The third 

techniques are hybrid models. As suggested by the name, endeavour to fuse the strengths of 

both the discriminative and generative models [9].  

 

Figure 2 Deep learning techniques 
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3 Compressing neural network review 

According to a literature review, neural network models are mostly over-

parametrised. Furthermore, it is even desirable for the initial stages of researching complex 

tasks. In complex tasks, it is essential that the model is large enough to solve the problem. 

Especially in the case of a higher number of deep layers, a large number of parameters is 

inevitable. A high number of parameters allows us to train neural networks more efficiently. 

Another advantage of an over-parameterised neural network is due to the presence of more 

suitable landscape loss structures. Thirdly, over-parametrised models may have fewer 

“erroneous” local minima that could degrade the optimisation process. However, despite 

these advantages, over-parametrisation is not an optimal situation, even if the computational 

power is not considered constrained. Therefore, we consider over-parametrised networks as 

a limiting factor. Especially when attempting to extend the application of deep neural 

networks to resource-constrained devices such as IoT, IIoT and AIoT devices. 

Compression of neural networks seemed to be a possible method to solve this 

problem. The outcome of the conducted research was identifying several neural network 

reduction methods and confirming their validity based on a literature search. 

Neural network compression has enormous potential and great importance in the 

field of artificial intelligence. Specifically in the problem of optimising deep learning 

models. The primary purpose of such compression is its ability to reduce the computational 

resource requirements that these neural models need. Optimally, we can reach a reduction 

of the impact on their performance to a minimum. This reduction in model complexity 

correspondingly reduces the memory footprint and computational demands. This enables the 

deployment of deep learning models on devices with limited computational capabilities, 

such as IoT, IIoT, AIoT and thus supports the field of edge computing. In addition, 

compressed neural networks can alleviate power consumption and latency issues. 

Consequently, it enhances the scalability and responsiveness of applications. For 

example, in real-time applications. Latency is often a factor, and deploying compressed 

models can speed up inference times. Similarly, for battery-dependent devices, reducing 

power consumption through model compression can extend the operational runtime of the 

device.  

Following a literature review, two leading methods for neural network compression 

have been identified for the purposes of this thesis. Specifically, pruning and quantisation. 

The principle of pruning is to trim off individual neurons with the intention of trimming 
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specific neurons or weights with the objective of removing neurons that do not contribute to 

the learning of the network. The process of determining which parameters to trim involves 

optimisation elements. This is one of the disadvantages of pruning. In addition, the search 

algorithm during the implementation of pruning requires the design of a search strategy and 

extra computational power to implement the pruning. Based on the above, we consider 

pruning to be a suitable method with convincing results. Figure 3 clearly demonstrates a fully 

connected network and a pruned network. 

 
Figure 3 Synapses and neurons before and after pruning [10] 

Therefore, the second leading method is quantisation, shown in Figure 4. 

Fundamentally, quantisation encompasses the deliberate reduction in the precision of 

numerical representations that are used for the weights within the network. To illustrate, 

a model that has been trained initially employing 32-bit floating point numbers might 

subsequently undergo quantisation to use 8-bit. Two types of quantisation exist, uniform and 

non-uniform, with the latter adjusting quantisation levels according to value distribution and 

providing better accuracy, though with increased implementation complexity. Weight and 

activation values can be quantised separately or simultaneously, with the latter option 

yielding maximum savings. Quantisation can also be applied during training, allowing the 

model to learn to compensate for quantisation-induced errors or after training, which is 

a simpler and faster process but may cause more significant accuracy loss. 

In contrast to pruning, we identify that quantisation has several advantages: 

• Straightforward implementation, 

• greater reduction in model size compared to pruning, 

• computational operations with lower precision are less demanding, 

• quantisation does not modify the architecture configuration of the network, 

• modern hardware accelerators have native support for quantised operations. 

Despite the undeniably significant potential of neural network compression, it should 

be mentioned that the process is not without its limitations. Compression methods’ 
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effectiveness and the subsequent effect on the neural model is a significant subject for 

discussion. The efficiency is indisputable; we can select between aggressive compression 

and more subtle methods. Particular compression methods or selection of compression 

parameters can result in a significant loss of model accuracy on the test set. This leads to 

designing and refining compression techniques capable of effectively reducing the model 

size without significant performance degradation. Currently, these problems remain active 

areas of research.  

Figure 4 FP32 to INT8 quantisation schema [11] 

Overall, the potential and importance of neural network compression underline its 

vital role in advancing artificial intelligence technologies and expanding the potential 

applications of deep neural networks to resource-constrained devices. 
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4 Resource-constrained devices 

Based on our analysis, it is clear that deploying AI-based tasks using deep learning 

requires specialised hardware. This dissertation thesis analyses and discusses the relation 

between IoT devices, IIoT devices and AIoT devices [12]. 

As we have found in this thesis, such hardware is not commonly available in IoT 

devices. This stems from the nature of the nature of their activities has not yet led to such 

a requirement. With the advancing efforts to deploy artificial intelligence through deep 

learning as part of the Industry 4.0 transformation, it is also expected to process deep network 

algorithms at the location of the application. From our perspective, this is precisely the place 

for the demand for compact embedded devices that could leverage deep learning algorithms. 

In this thesis, we have focused on understanding IoT devices in Industry 4.0 and their 

adaptation in industrial environments. In particular, certified hardware production and 

adaptation to external environmental conditions are required to implement IoT devices in 

the industry successfully. By adapting to the environment, we mean adapting to dust 

conditions and water resistance standards concerning international standards. IoT devices 

that meet the industrial design standard for industrial applications can be defined as 

Industrial IoT devices or IIoT devices. Let us move forward with the development of these 

devices. If we extend the idea of these IIoT devices to include the requirements for 

implementing deep neural network algorithms, it would involve a condition that such 

devices are equipped with the proper hardware for neural network acceleration. Therefore, 

a new term for such devices is established as Artificial Intelligence IoT devices or AIoT. We 

have found the relationship between the IoT industrial standards and the capability of 

accelerating neural networks to be synergistic, as Figure 5 shows. As a result, each 

technological feature overlap enhances the benefit of the previous technology. This further 

highlights the requirement for multi-disciplinarity in device deployment when AIoT 

equipment meets industry standards. From our perspective, there will be a strong demand 

for these devices in the following years, and we will see a great effort to implement these 

devices in Industry 4.0. For now, the market of AIoT devices that would meet the industrial 

standard is not large enough. In this thesis, we have selected potential devices which serve 

as neural network accelerators. We have described the selected devices and their technical 

parameters. Most of the devices had one common problem.  
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Figure 5 Internet of things environment 

The majority of the devices do not meet the industrial standard. These devices, such 

as google coral or Nvidia Jetson devices, have proper software support by the manufacturer. 

They also support frameworks like Tensorflow, PyTorch and Keras. They have excellent 

connectivity and interface support.  

As a result of our efforts, a comparison with the key attributes of Industry 4.0 utilising 

the Jetson device was provided. However, manufacturers recommend using them for 

development purposes. The exception is some Nvidia Jetson devices. For example, the 

Jetson NX Xavier comes in a System on Module (SoM) version. In this case, the computing 

unit is in the form of a card that can be embedded in its own device - a board carrier. The 

second device chosen was the Jetson Orin. This device is the only one in the Jetson series 

that has the ability to adhere to industry standards of design while being fully capable of 

accelerating neural networks. Its features allow to produce autonomous machines at the 

edge. The result of our efforts was a comparison with the key attributes of Industry 4.0. 

Additionally, our research discussed resource-constrained devices from small and medium 

businesses’ points of view. We explored their application potential in the industry, the 

position of these devices in the role of IoT, IIoT and AIoT, and discussed the possibilities of 

their application. Small and medium businesses can particularly benefit from the fact that 

these facilities, even when using AIoT devices, have a relatively low cost. According to our 

review, in the case of SMEs, the purchase price is one of the essential aspects of the decision-

making process. We concluded that devices that would meet the industrial design standard 

and, at the same time, have deep learning-ready hardware would greatly benefit industrial 
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processes. In particular, they would significantly enhance the Edge Computing paradigm, 

which is part of the Industry 4.0 concept. This paradigm involves performing computation 

at or near the data source instead of relying on a centralised location away from the data 

source, such as cloud servers. In this case of deploying high-performance AIoT devices, 

advanced deep learning algorithms can be used at the point of first data acquisition. In 

addition, this concept involves performing computations at or near the data source instead 

of relying on a centralised location outside the data source, such as cloud servers. All of this 

is to promote IoT as one of the cornerstones of Industry 4.0, with an emphasis on expanding 

support for AI applications.  

To clarify the issue, it is necessary to distil two other terms from the term IoT, namely 

Artificial Intelligence of Things and Industrial Internet of Things. These two concepts fully 

complement the potential of IoT in industry, where using AI on edge makes it possible to 

replace conventional methods with AI methods on the devices whose hardware architecture 

and software allow it. Several devices can be categorised as AIoT. Since no standard 

definition of such devices exists, we have based our definition on the attributes. Among the 

devices we have turned much of our attention to is Nvidia’s Jetson category of devices. 

These devices feature robust hardware architectures for the acceleration of neural networks. 

Nvidia Jetson devices are designed to infer deep neural networks. They can also be 

categorised as AIoT based on their Internet connection or internal industrial network 

connection. The Jetson Nano and Jetson Xavier NX support the network’s latest connectivity 

standards. Such specialised architecture and connectivity enable the use of advanced real-

time neural network model architectures. Thus, in Table 1 we compare some of the 

characteristics of the devices from the perspective of Industry 4.0, whether they are 

promising for the fourth generation of industry, and if they meet the requirements for 

Industry 4.0 IoT, Big Data, AI, Augmented Reality, Simulation, Horizontal and Vertical 

Integration, Additive Manufacturing, Autonomous Robots, Cloud Computing and 

Cybersecurity [1]. 
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Table 1 Evaluation of selected devices in terms of Industry 4.0 attributes [1] 

Industry 4.0 Technologies Jetson AGX 
Jetson Xavier 

NX 
Jetson Nano 

IoT Yes Yes Yes 
Big Data Yes Yes Yes 
Artificial Intelligence Yes Yes Yes 
Augmented Reality Yes Yes Yes 
Autonomous Robots Yes Yes Yes 
Simulation Yes Yes Yes 
Horizontal and Vertical 
Integration No No No 

Additive Manufacturing No No No 
Cloud Computing Yes Yes Yes 
Cybersecurity Yes Yes Yes 
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5 Proposal of strategy for training neural network based on weight 

distribution comparison 

Comparing distributions is a fundamental aspect of statistical analysis that is applied 

to various domains, including industrial processes. This comparison helps to detect patterns, 

understand the underlying structure, and draw inferences about the data [13]. By comparing 

distributions, it is possible to quantify differences, monitor performance, optimise processes, 

and assess risks [14]. This introduction will discuss the importance of comparing 

distributions in industrial settings and provide examples of how it is applied in practice. 

Nowadays, statistics is an indispensable tool for analysing and interpreting the 

collected data results. A fundamental step in this analysis is comparing distributions between 

different groups or within a single group over time. The methods for comparing distributions 

can be different. Each offers its own unique advantages and limitations. In what follows, we 

will attempt to compare selected methods to gain a deeper understanding of their 

characteristics and to decide in which situations their use is most appropriate. 

In industrial processes, probability distributions can be used to model various aspects 

of the system, such as the quality of products, sensor readings, equipment lifetimes, 

production times, and failure rates. Comparing these distributions can provide valuable 

insights into the performance of the process and identify potential areas for improvement or 

risk mitigation [15]. 

One common application of comparing distributions in industrial processes is quality 

control. For example, consider a manufacturing plant that produces ball bearings. The 

diameters of the bearings should adhere to a specific tolerance range. By comparing the 

distribution of the diameters of the manufactured bearings with the expected distribution, 

deviations from the standard can be detected [16]. Identifying these deviations allows the 

manufacturer to take corrective action, ensuring the products meet the required quality 

standards. Another application is process optimisation. For example, in a chemical plant, the 

distribution of the output product’s purity might be of interest. The optimal conditions that 

maximise product purity can be determined by comparing the purity distribution under 

different process conditions, such as varying temperature, pressure, or reactant 

concentration. 

In predictive maintenance, comparing distributions can help detect anomalies in 

sensor data that may indicate equipment failure. For instance, suppose a machine’s 

temperature readings typically follow a specific distribution. In that case, a sudden shift in 
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the distribution might indicate a malfunction that requires maintenance to prevent 

unexpected breakdowns and production downtime. Risk management is another area where 

comparing distributions plays a crucial role. In an industrial setting, comparing the 

distribution of losses under different scenarios can help identify the situations that represent 

the most significant risk. This information can be used to develop strategies for risk 

mitigation, such as increasing safety measures, adjusting production schedules, or 

purchasing insurance coverage. 

In conclusion, comparing distributions is a vital tool for analysing and improving 

industrial processes. By quantifying differences between distributions, it is possible to 

identify patterns, assess risks, and optimise performance. Applications include quality 

control, process optimisation, predictive maintenance, and risk management, among others. 

Companies can enhance their operations and make more informed decisions by 

understanding and applying the principles of comparing distributions. 

5.1 Proposal of implementations statistics methods  

The comprehension of weight distribution is of vital significance in the domain of 

machine learning, particularly in neural networks. Various weight distributions can result in 

distinct model efficacy, robustness, and convergence rate degrees. 

The comparison of distributions holds a vital position in machine learning, wherein 

the weight distribution selection can substantially influence the training procedure and the 

comprehensive efficacy of the model. Therefore, this research aims to analyse and compare 

the properties and effectiveness of different distributions used in neural network training in 

the context of quantising neural network weights. 

Various methods exist for measuring statistics to compare:  

• Kullback-Leibler divergence, 

• Jensen-Shannon Divergence. 

Kullback-Leibler divergence 

In this case, the KL divergence is utilised to measure the difference between the 

probability distributions of the weights in the initial model and the quantised model. The 

statement denotes the degree of dissimilarity among the learned parameters of the two 

models. The Kullback-Leibler divergence is a non-negative real number, whereby a value of 

zero signifies that the two probability distributions are indistinguishable, and higher values 

indicate a greater extent of divergence [17]. When implementing quantisation on a neural 
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network model, it is preferable to maintain the model’s performance as closely as possible 

to its original state. Consequently, conducting an analysis of the KL divergence can prove 

to be beneficial in assessing the impact of the quantisation process on the model parameters. 

In this instance, the KL divergence is employed to quantify the disparity between the 

probability distributions of the weights in the original model and the quantised model. It 

indicates how dissimilar the two models’ learned parameters are. 

The KL divergence is a positive number, where a value of 0 indicates that the two 

probability distributions are identical, and more significant values indicate a greater degree 

of dissimilarity. In summary, the KL divergence exhibits a range of values between 0 and 

positive infinity. The following is an explanation of the meaning towards those values. The 

KL divergence is zero if and only if the two distributions being compared are the same [18]. 

In other words, every possible event has the same probability in both distributions. This 

represents a perfect match. With an increase in divergence, it becomes clear that the 

distinction between the distributions also escalates. It is important to note that this value is 

not capped, meaning there is no upper boundary. Consequently, this divergence could 

manifest as a huge value in cases where the two distributions are remarkably different. [19]. 

When applying quantisation to a neural network model, keeping the model’s performance 

as near to the original as feasible is desirable. Therefore, it is helpful to analyse the KL 

divergence to determine how much the quantisation procedure has affected the model 

parameters. 

Hence, analysing the KL divergence can prove advantageous in comprehending how 

much the quantisation process has impacted the model parameters. Nevertheless, it is 

essential to note that the KL divergence does not have symmetric properties, as shown by 

the existing inequality below. 

KL(p, q) ≠ KL(q, p). (1) 

This is because the measurement solely pertains to the quantised model’s deviation 

from the original model, not vice versa. A reduced KL divergence value indicates that the 

parameters of the quantised model are close to those of the original model, indicating that 

the quantisation procedure has effectively maintained the model’s properties. Conversely, 

a higher KL divergence value signifies a substantial deviation of the quantised model’s 

parameters from the original model, which may impact the model’s efficacy. 
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Although KL divergence offers valuable insights into the dissimilarity between the 

model parameters, it does not provide direct information on the effect on the model’s 

performance. Therefore, evaluating the performance of the quantised model on a test dataset 

is essential in determining its effectiveness relative to the original model. 

 

𝑅𝑅(𝑑𝑑; 𝑞𝑞) = 𝐾𝐾𝐾𝐾�𝑀𝑀𝑑𝑑 ∥ 𝑀𝑀𝑞𝑞� = �𝑃𝑃�𝑡𝑡ǀ𝑀𝑀𝑞𝑞�
𝑡𝑡∈𝑉𝑉

𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃�𝑡𝑡ǀ𝑀𝑀𝑞𝑞�
𝑃𝑃(𝑡𝑡ǀ𝑀𝑀𝑑𝑑) 

(2) 

Jensen-Shannon Divergence 

The Jensen-Shannon Divergence (JSD) is a mathematical metric that evaluates the 

similarity between two probability distributions in a symmetric manner. For example, the 

quantity mentioned above results from the Kullback-Leibler Divergence (KLD) and is both 

non-negative and bounded [20]. Therefore, the Jenson-Shannon Divergence (JSD) is 

a viable method for evaluating the similarity between probability distributions in various 

fields such as information theory, natural language processing, and machine learning [21]. 

The formula for JSD is as follows: 

JSD(P, Q) = (1/2) * (KLD(P, M) + KLD(Q, M)) (3) 

Where P and Q are the two probability distributions being compared, KL divergence 

is the Kullback-Leibler Divergence, and M is the average distribution defined as: 

M = (1/2) * (P + Q) (4) 

JS divergence holds a fundamental characteristic wherein it consistently assumes a 

finite numerical value that stays within the range of 0 to 1. This approach is highly beneficial 

in distributions with non-overlapping supports, as KL divergence would result in an 

unbounded outcome [22]. 

A key aspect, and indeed a crucial advantage, of the Jensen-Shannon (JS) divergence 

lies in its bounded nature. Notably, it consistently produces values confined within the 

interval [0,1] when represented in bits. This specific characteristic proves to be particularly 

beneficial under certain conditions. For instance, when comparing probability distributions 

with non-overlapping supports is necessary, a scenario presents a challenge for Kullback-
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Leibler (KL) divergence as it would lead to an undefined or infinite outcome. Hence, the 

finite and bounded nature of JS divergence provides a robust solution in such circumstances. 

5.2 A proposed method for implementing weight distribution comparison 

of quantised and non-quantised neural network 

The primary purpose of this section is to understand the properties and performance 

of two comparing different weight distributions in our neural network models. Comparing 

distributions is particularly important because we will know what happens to the model 

during or after training. In our design, we thus have information on how the weight 

distribution changes during training. This is essential information because the values of the 

weights change significantly during backpropagation. Consequently, even more, when in 

our case, we use the comparison of weight distributions to compare the original trained 

model and the model after quantising the weights. In our case, we have designed a new 

neural network training strategy designed for comparing the weight distributions of the 

original and the quantised model. In this way, we are able to obtain information about the 

effect of quantisation directly on the model weights in an independent way. In this case, we 

used the architecture of convolutional neural networks and fully connected layers. 

We considered two ways. The first way was to train the neural network on 

an unconstrained dataset. This involved the standard procedure of pre-processing the dataset 

if the data in it had not been modified previously. Subsequently, split the dataset into 

a training set and a test set. The next step was to train the neural network. After training, we 

stored the model and weights of a separate dataset.  

The second step was to quantise the trained model. After several experiments, we 

decided to choose uniform quantisation as the quantisation method. Non-uniform 

quantisation proved to be ineffective during our experimentation for several reasons. We did 

achieve a first-time random distribution of numbers in the quantisation range, but there was 

an intense degradation in the prediction of the neural network output. Further use of neural 

network regeneration techniques was also unsuccessful. Thus, there was an irreversible 

degradation of the model, which led to the need to re-train the neural network from scratch. 

The next logical choice was to use uniform quantisation. Accordingly, this is based on the 

fact that all quantisation levels are equally distributed. Uniformity refers to the fact that these 

levels are equally distributed across the entire range of values that can be quantised. 

Consequently, the difference between two adjacent quantisation levels is always constant. 
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This quantisation method has proven to be significantly better for our purposes, especially 

regarding the impact of the quantisation process on the model. 

Figure 6 shows a conceptual diagram of the procedure of the first proposed method 

of comparing the distribution of weights of a quantised and unquantised neural network. The 

diagram shows the dataset from which we make a copy during training. One for the original 

model without quantisation and the other for the quantised model. The following is a typical 

portion of training a convolutional neural network on the dataset. It includes the following 

procedure:  

The experimentation requires a certain duration until the desired network 

performance is achieved. Since it is an iterative process, it is necessary to change the 

hyperparameters. After successfully completing the convolutional neural network training, 

the next step was to save the model in the Keras framework. In this way, it is possible to 

recover the saved model and continue with predictions or further training without losing the 

learned weights. 

As part of this algorithm, in the beginning, it is possible to choose the quantisation 

degree, the quantisation parameter we can choose from 4 to 32 bits. Since non-uniform 

quantisation has not been successful in our implementation, we only use uniform 

quantisation in this process. In our opinion, uniform quantisation best represents the original 

distribution of weights and can also produce the expected quantisation effect. After the 

quantisation parameters are set, the next step is to create a copy of the original (reference) 

model. This copy will be the input for the uniform quantisation process according to the 

quantisation parameters.  

In order to avoid the early degradation effects of quantisation, we further retrained 

the model after this process. This model was no longer trained from the beginning, instead 

we used only a small number of iterations for retraining. The number of iterations 

of retraining is not fixed in any way due to it is based on empirical rules. The number 

of iterations of retraining depends on the number of epochs needed to train the whole 

network. It can be in units of repetitions or even in tens, depending on the complexity of the 

model. However, this step is optional. In fact, ideally, after quantisation, the model would 

not need any further processing. Then the effect of exploiting the quantisation potential 

would be most significant.  

The quantisation process is followed by the storage of the quantised weights. At this 

point, we have stored the original and quantised weights. The following is the part where we 

used statistical methods. We have stored their final distributions from the originally stored 
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weights and the new quantised weights. We then used these distributions as input to the 

comparison algorithm. In this section, we compared the distributions of the original model 

before quantisation and after quantisation with the selected statistical method. Namely, we 

tested the Kullback-Leibler divergence. Nevertheless, using the Jensen-Shannon divergence 

or the Cosine similarity is also possible. This information is represented by a number – 

an index, which is provided on the screen and can be evaluated afterwards. This index 

describes the similarity of the tested distributions. If the distributions are significantly 

different, it is possible to assume a degradation of the weights in the model; hence, the 

quantisation had an undesirable impact on the network. We used the Keras framework for 

the implementation. In the next section, we propose a modified version of this training 

strategy to use the similarity index directly during training. 

 

Figure 6 Proposed method for training neural networks based on weight distribution comparison after quantisation 

Figure 7 shows a conceptual diagram of the procedure of the enhanced technique 

proposed method of comparing the distribution of weights of a quantised and non quantised 

neural network. The diagram shows the dataset from which we make a copy during training. 

One for the original model without quantisation and the other for the quantised model. The 

following is a typical portion of training a convolutional neural network on the dataset. It 

includes the same training procedure as we mentioned above.  

This strategy differs from the previous one mainly in the aspect of utilising 

information about the change in distribution between the quantised and the unquantised 
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model. In this proposed training strategy, we used the similarity index directly during 

training. This technique aims to provide the user with information during training about the 

similarity of the distribution of the weights in the quantised and in the original unquantised 

one. Each epoch similarity index is calculated during the quantised neural network training. 

Hence, a similarity index between the original weight distribution and the current weight 

distribution will be available every epoch. 

The procedure presented in this context helps interpret and facilitates the 

comprehension of the model’s behaviour throughout the training process. Further, it provides 

information directly during training about the dissimilarity of the weight distributions during 

training each epoch (each iteration of training). Obtaining such information can help us, for 

example, in deciding to terminate the training of the quantised network early. In this case, if 

it is clear that the model’s accuracy does not grow during the training process. At the same 

time, if the difference between the distributions is significant, we can change the quantisation 

parameters and repeat the whole process.  

 

Figure 7 Proposed method for training neural networks based on weight distribution comparison during training 

Especially in the case of a considerable number of epochs (e.g. 50 or more), it is 

a helpful tool for analysing the training status. Moreover, it provides interesting additional 

information, which can be useful during the training of neural networks using quantisation. 

The method call to compute the selected statistical method is provided by the CallBack class. 

Callbacks are set of methods called at various stages of training, testing, and predicting. 

Callbacks are useful to obtain a view of internal states and statistics of the model during 

training.  
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The values of the resulting index depend on the selected statistical method. Among 

the methods presented in the previous chapter, the Kullback-Leibner divergence was the 

most interesting. Although the latter is not bounded, it is relatively intuitive to infer the 

magnitude of the difference between the distributions as an auxiliary index from the 

magnitude of the difference. One advantage of applying these statistical methods, such as 

KL divergence and JS divergence, is that they are not computationally intensive. From our 

observations, we did not observe a significant impact on the training progress, even in the 

case of computing multiple similarity indexes. 

This strategy is intended to support the process of reducing the model size for 

deployment on devices with constrained computational resources that involve rounding or 

reducing the accuracy of the weights. Furthermore, comparing the weight distributions of 

the quantised and original model can help in deciding how to use quantisation techniques 

use in order to determine the impact of quantisation on the model in terms of the possibility 

of its degradation. In addition, this technique was designed to facilitate the training and 

quantisation of neural networks, particularly concerning use in training in order to further 

utilise the models on resource-constrained devices.  

5.3 Experiments and results 

In this section, we have chosen to perform experiments based on the proposal in the 

section above. This series of experiments was conducted on various datasets, aiming to 

deepen our understanding of their inherent structures and characteristics. We used 

convolutional networks to classify object types for our purposes. 

At the beginning of the experiments, we trained the selected neural networks without 

constraints and used a simple custom or convolution neural network architecture. Generally, 

we used a  network with varying depths depending on the depth of the network needed, based 

on the complexity of the dataset. After training the neural network, we stored the parameters 

of the trained neural model. These parameters contained all the parameters found in the 

model. 

Upon completing our neural network model training phase, an essential next step that 

naturally follows is saving the model’s learned parameters. Therefore, we extracted the 

weights from the stored model parameters from each layer of this model. We believe that 

the weight distribution of the neural model can provide valuable insights into the learning 

process and the model’s overall behaviour. Specifically, this analysis can elucidate whether 
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the learning process exhibits signs of convergence and to what extent the weight updates 

during training contribute to the meaningful progress of the model’s learning. 

Following this initial assessment, we focus on implementing a quantisation process 

on the corresponding networks derived from these datasets as an essential technique within 

the realm of compression. Quantisation effectively simplifies the network, reducing its 

complexity while preserving its essential features. Furthermore, through this process, we can 

transform higher-dimensional data into a more manageable format, thereby rendering it more 

suitable for detailed analysis and interpretation. 

The primary aim underlying these experiments was twofold. Firstly, we sought to 

devise a technique tailored explicitly towards the training and quantisation of neural 

networks. Secondly, the objective leads to support facilitating the training of neural networks 

designed for resource-constrained devices. In our experimentation, we used a feedback 

approach. During training, we used information from the original trained neural network. 

Procedure of experiments 

In the following tables, the enhanced second proposal results are represented. We 

have focused on implementing the Kullback-Leibler divergence and Jensen-Shannon 

divergence into single epochs during neural network training. Thus, we output the Kullback-

Leibler divergence and Jensen-Shannon divergence in each iteration for comparing the 

weight distribution of the trained quantised model and the original model’s weight 

distribution. As a result, we output an index that serves as an indicator during training. We 

used uniform quantisation for these experiments. In this case, an eight-bit degree of 

quantisation is implemented. The difference between original and quantised neural networks 

was calculated using Kullback-Leibler divergence and Jensen-Shannon divergence. 

We performed an experiment calculating KL and JS divergence in the following 

tables. Then, we applied our proposal to the MNIST dataset with seven hidden neural layers. 

The aim was to verify the concept. 

Architecture: 

• Conv2D Layer with 32 filters (First Hidden Layer) 

• MaxPooling2D Layer 

• Dropout Layer 

• Conv2D Layer with 64 filters (Second Hidden Layer) 

• MaxPooling2D Layer 
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• Dropout Layer 

• Conv2D Layer with 128 filters (Third Hidden Layer) 

• MaxPooling2D Layer 

• Dropout Layer 

Table 2 Results of an experiment implementing KL divergence and JS divergence in the process of training neural 

networks - CIFAR10 

Dataset Model Epoch Quantisation 
KL 

divergence 
[-] 

JS 
divergence 

[-] 

Accuracy 
quantised 

[%] 

Accuracy 
original 

[%] 

CIFAR 

10 
CNN 

0 8 bit 0.6203 0.1261 56.92 49.99 

1 8 bit 0.6681 0.1355 62.18 58.35 

2 8 bit 0.7023 0.1417 65.75 62.76 

… … … … … … 

40 8 bit 0.8516 0.1680 77.41 78.70 

41 8 bit 0.8512 0.1681 78.70 78.06 

42 8 bit 0.8527 0.1685 78.68 78.64 

43 8 bit 0.8567 0.1689 77.99 77.66 

44 8 bit 0.8582 0.1692 77.74 78.43 

45 8 bit 0.8585 0.1693 79.19 78.93 

46 8 bit 0.8586 0.1693 78.79 79.26 

47 8 bit 0.8570 0.1691 78.46 79.97 

48 8 bit 0.8579 0.1692 79.85 79.39 

49 8 bit 0.8611 0.1695 79.59 79.19 

In the Figure 8 we can see the training results, which are listed in the table above 

(Table 2). 

 

Figure 8 Results of an experiment implementing KL divergence and JS divergence in Python - CIFAR10 
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We performed an experiment calculating KL and JS divergence in the following 

tables. Then, we applied our proposal on the MNIST dataset with seven hidden neural layers. 

The aim was to verify the concept. 

Architecture: 

• Flatten Layer (Input Layer) 

• Dense Layer with 512 neurons (First Hidden Layer) 

• Dropout Layer 

• Dense Layer with 256 neurons (Second Hidden Layer) 

• Dropout Layer 

• Dense Layer with 10 neurons (Output Layer) 

Table 3 Results of an experiment implementing KL divergence and JS divergence in the process of training neural 

networks - MNIST 

Dataset Model Epoch Quantisation 
KL 

divergence 
[-] 

JS 
divergence 

[-] 

Accuracy 
quantised 

[%] 

Accuracy 
original 

[%] 

MNIST Custom 

0 8 bit 0.6144 0.1248 97.25 96.64 

1 8 bit 0.6523 0.1320 97.53 97.47 

2 8 bit 0.6739 0.1361 97.88 97.94 

3 8 bit 0.6880 0.1386 98.14 98.17 

4 8 bit 0.6985 0.1405 97.97 98.08 

5 8 bit 0.7024 0.1414 98.20 97.98 

6 8 bit 0.7072 0.1422 98.02 98.16 

7 8 bit 0.7099 0.1429 98.16 98.00 

8 8 bit 0.7127 0.1435 98.31 98.17 

9 8 bit 0.7174 0.1442 98.26 98.13 

In the Figure 9 we can see the results of the training, which are listed in the table 

above (Table 3).

 
Figure 9 Results of an experiment implementing KL divergence and JS divergence in Python - MNIST 
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We performed an experiment calculating KL and JS divergence in the following 

tables. Then, we applied our proposal to the FMNIST dataset with seven hidden neural 

layers. The aim was to verify the concept. 

Architecture: 

• Flatten Layer (Input Layer) 

• Dense Layer with 512 neurons (First Hidden Layer) 

• Dropout Layer 

• Dense Layer with 256 neurons (Second Hidden Layer) 

• Dropout Layer 

• Dense Layer with 10 neurons (Output Layer) 

Table 4 Results of an experiment implementing KL divergence and JS divergence in the process of training neural 
networks - FMNIST 

Dataset Model Epoch Quantisation 
KL 

divergence 
[-] 

JS 
divergence 

[-] 

Accuracy 
quantised 

[%] 

Accuracy 
Original 

[%] 

FMNIST Custom 

0 8 bit 0.6144 0.1248 86.24 83.61 

1 8 bit 0.6523 0.1320 86.45 86.43 

2 8 bit 0.6739 0.1361 87.32 86.13 

3 8 bit 0.6880 0.1386 87.45 87.52 

4 8 bit 0.6985 0.1405 87.20 87.55 

5 8 bit 0.7024 0.1414 87.30 87.27 

6 8 bit 0.7072 0.1422 88.19 87.21 

7 8 bit 0.7099 0.1429 87.51 88.17 

8 8 bit 0.7127 0.1435 88.33 87.87 

9 8 bit 0.7174 0.1442 88.93 88.43 

In the Figure 10 we can see the results of the training, which are listed in the table 

above (Table 4). 

 
Figure 10 Results of an experiment implementing KL divergence and JS divergence in Python - FMNIST 
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The above experiments were made mainly to prove the concept. In addition, we show 

that the proposed training strategy is implementable in a conventional convolutional network 

training procedure. 

During training, this method is advantageous when the resulting iteration accuracy 

of training the neural network does not grow several iterations ahead of time, and our 

indicator shows a significant difference between the iteration distribution from the original 

(unquantised) neural network. 

Since we interfere with the training process and compute the dissimilarity of the 

weight distribution during each iteration, it can potentially slow down the training. However, 

there was no significant slowing down of the training process during the execution of the 

experiments. Problems could arise with large data sets. As we can see by observing the 

values of KL and JS indices with the increasing number of iterations, the distributions 

change. We can also observe that as the number of iterations increases during training, the 

values of the KL divergence and JS divergence indexes also increase in all models. This 

indicates that the distributions changed during the training of the quantised neural model. 

The continuous increase of these indices without a significant leap in values means that there 

were no rapid and drastic changes in the model caused by quantisation. The advantage of 

using the index for similarity distributions of the weight distributions is that we can verify 

the changes during the training of the quantised model and track them independently with 

the two indexes. Thus, we can track the changes in the model and detect any significant 

effects that may cause model degradation promptly. We can use this to terminate training 

earlier and subsequently change the quantisation parameters or other neural network training 

parameters. Thus, this is an additional measurement parameter. We have provided this index 

as part of a new neural network training strategy to quantise neural networks. We have tested 

this proposal’s feasibility and tested this concept on three datasets. 
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Summary 

In our dissertation, we addressed the topic of deep learning and resource-constrained 

devices. First, we analysed the current state of the art of neural networks from the perspective 

of the needs of resource-constrained devices. The higher degree of over-parameterisation of 

neural network models has created room for increasing their efficiency. One of the tools to 

address redundancies in neural network models is neural network compression. Reducing 

over-parameterised models has opened the way to using deep neural networks on resource-

constrained devices. In this context, we have addressed the issue of resource-constrained 

devices and their potential in Industry 4.0. We have identified the industry requirements for 

such devices in the industry. Ideally, these IoT devices would meet the industrial standard 

while having hardware capable of accelerating neural networks. The result would be an 

industrial AIoT device capable of participating in the implementation of AI algorithms in an 

industrial environment. Our research has identified potentially suitable devices for 

implementing deep learning in the industry based on the characteristics expected for the 

transformation to Industry 4.0 within the IoT concept. Subsequently, we addressed neural 

network compression techniques, namely pruning and quantisation. We performed 

a theoretical analysis of these compression methods and conducted a literature review where 

we evaluated the different approaches. This comprehensive review provided a complete 

perspective of the problem and was a prerequisite for further work. 

The last part of this thesis was devoted to designing a strategy for training neural 

networks based on statistical methods. We performed this comparison to use the distribution 

of the weights of the original model and the quantised model as an indicator of the state of 

the network during training. First, a theoretical analysis was performed in which different 

methods of comparing distributions based on statistical methodologies were presented. 

Then, based on this theoretical foundation, we proposed a novel strategy for training neural 

networks and comparing weight distribution. In particular, we used this comparison of 

distributions as an indicator of training status during neural network quantisation. This 

procedure gave us insight into the current state of the neural network and allowed us better 

to understand the impact of quantisation on the training process. Finally, throughout the 

quantised neural network training process, we extracted data regarding the distribution of 

weights from the original network. We then used statistical methods to compare the weight 

distributions of the original unquantised neural network and the ongoing training epoch of 

the quantised network. The result was a distribution similarity index that we can work with 
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and evaluate. This metric proved particularly valuable in facilitating the decision to terminate 

training early, especially in cases where the difference in the network was insignificant. In 

conclusion, this dissertation’s results support the field of automation while utilising 

resource-limited devices in industrial processes as part of the Industry 4.0 paradigm. 
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