RIADENÁ KRYŠTALIZÁCIA V SYSTÉME Al₂O₃ – (Y₂O₃) ZrO₂

DIRECTIONAL SOLIDIFICATION IN SYSTEM AL₂O₃ - (Y₂O₃) ZRO₂

Roman ČIČKA¹ - Viera TRNOVCOVÁ² - M.Yu. STAROSTIN³ Vladimír LABAŠ¹ - Stanislav MINÁRIK¹ - Marián KUBLIHA¹ - Ondrej BOŠÁK¹

Autori: Ing. Roman Čička¹, Ing. Viera Trnovcová², CSc., Dr. M.Yu. Starostin, PhD.³, Doc. RNDr. Vladimír Labaš, PhD.¹, Ing. Stanislav Minárik, PhD.¹, Ing. Marian Kubliha, PhD.¹, Mgr. Onrej Bošák¹ Pracovisko: ¹Katedra nekovových materiálov, Materiálovotechnologická fakulta STU ²Katedra fyziky, Materiálovotechnologická fakulta STU ³Ústav fyziky tuhých látok, RAV, Černogolovka, Rusko Adresa: Paulínska 16, 917 24 Trnava Tel.: 00421 33 5516983, E-mail: <u>cicka@mtf.stuba.sk, fyzitrno@mtf.stuba.sk</u>, labas@mtf.stuba.sk, minarik@mtf.stuba.sk, kubliha@mtf.stuba.sk, bosak@mtf.stuba.sk

Abstract

The paper deals with directional solidification of eutectic composites. The influence of composition, growth rate, curving of solid-liquid interface and facetting of solid-liquid interface on microstructure of $Al_2O_3 - (Y_2O_3)$ ZrO₂ eutectic composites is shown.

Článok sa zaoberá riadenou kryštalizáciou eutektických kompozitov. Na príklade systému $Al_2O_3 - (Y_2O_3)$ ZrO₂ sú ukázané niektoré faktory ovplyvňujúce výslednú mikroštruktúru, ako zloženie, rýchlosť rastu, zakrivenie kryštalizačného frontu, fazetovanie kryštalizačného frontu.

Key words

eutectic composites, unidirectional solidification, solid-liquid interface

kompozit eutektický, kryštalizácia riadená, front kryštalizačný

Úvod

Moderné technológie si často vyžadujú materiály so špeciálnymi vlastnosťami, napr. mechanickými, elektrickými, magnetickými, tepelnými, chemickými či optickými. Jedným z možných riešení, ako pripraviť materiály s optimálnou kombináciou vlastností, je riadená kryštalizácia zliatin eutektického zloženia. Takto pripravené materiály sa označujú ako eutektické kompozity. Ich významnou vlastnosťou je štruktúrna stabilita v širokom intervale teplôt [1,2] ďalšie vlastnosti súvisia s vlastnosťami eutektických fáz, ich morfológiou a vlastnosťami medzifázových rozhraní [3].

Riadená kryštalizácia eutektických kompozitov

Princíp riadenej kryštalizácie spočíva v kontrolovanom odvode tepla z taveniny cez tuhú fázu tak, aby sa dosiahol rovnomerný pohyb kryštalizačného rozhrania vopred stanovenou rýchlosťou. Obe fázy eutektika pritom rastú súčasne tzv. kooperatívnym rastom. Tavenina pred každou fázou sa obohacuje o dominantný prvok druhej fázy, čo vedie k priečnej difúzii oboch prvkov. Stredné difúzne dráhy určujú vzdialenosti medzi fázami λ , v závislosti od rýchlosti rastu v približne platí [4]:

$$\lambda^2 v = kon \check{s}t$$
.

Ak objemové podiely jednotlivých fáz eutektika sú približne rovnaké (resp. podiel jednej fázy je v intervale 0,28 – 0,5), mikroštruktúra eutektika bude lamelárna. Ak objemový podiel jednej fázy je menší ako 0,28, výsledná mikroštruktúra bude kvôli zníženiu povrchovej energie pravdepodobne vláknitá. Výnimku tvoria niektoré druhy nepravidelných eutektík (Fe-C, Al-Si), ktoré z dôvodu anizotropie povrchovej energie uprednostňujú mikroštruktúru blízku lamelárnej aj pri objemovom podiele oveľa menšom ako 0,28.

Rast nepravidelných eutektík je charakterizovaný atómovo hladkým kryštalizačným rozhraním aspoň jednej fázy. Keďže rýchlosť rastu rôznych atómových rovín je rozličná, fáza bude rásť v smere najrýchlejšie rastúcich rovín a bude ohraničená pomalšie rastúcimi rovinami – fazetami. Kritériom pre výskyt fazetovania je hodnota parametra α :

$$\alpha = \frac{\Delta S}{R} \xi \,,$$

kde ΔS je entropia tavenia fázy, R univerzálna plynová konštanta a ξ faktor zahrňujúci orientáciu rozhrania. Ak $\alpha > 2$, fáza rastie s fazetovaným rozhraním, pre $\alpha < 2$ s nefazetovaným rozhraním.

Z hľadiska vlastností sa najvýhodnejšou mikroštruktúrou eutektických kompozitov javí taká, pri ktorej je rozmer oboch fáz v smere rastu dostatočne veľký (dlhé vlákna, lamely), so silnou väzbou na rozhraniach a minimálnym počtom mikroštruktúrnych defektov (ohýbanie lamiel, prerušenie vlákien). Takáto mikroštruktúra môže byť dosiahnutá iba za podmienky, že tuhnutie prebieha pri rovinnom kryštalizačnom rozhraní. Najčastejším javom destabilizujúcim rovinné rozhranie je tzv. konštitučné podchladenie, ktoré vzniká v dôsledku zmeny koncentrácie taveniny pred postupujúcim kryštalizačným rozhraním. To spôsobuje lokálne zvýšenie teploty liquidu, takže v tavenine môžu existovať oblasti, v ktorých je aktuálna teplota menšia ako teplota liquidu a tavenina v nich sa nachádza v metastabilnom stave. Tam vznikajú hnacie sily vývoja porúch rovinného kryštalizačného frontu, čoho výsledkom je materiál s celulárnou alebou dendritickou mikroštruktúrou.

Kritériom rovinného rastu eutektika bez konštitučného podchladenia je rovnica [5]:

$$\frac{G}{v} = \frac{-m(c_e - c_0)}{D},$$

kde G je teplotný gradient v tavenine pri kryštalizačnom rozhraní, v - rýchlosť rastu,

m – sklon krivky liquidu,

 c_e – eutektická koncentrácia,

 c_0 – počiatočná koncentrácia taveniny,

D – difúzny koeficient prvku v tavenine.

Z tejto rovnice vyplýva, že pri vhodných technologických parametroch (strmý teplotný gradient, malá rýchlosť rastu) možno riadenou kryštalizáciou pripraviť kompozitné materiály s usporiadanou mikroštruktúrou aj mimo eutektického zloženia. Tento fakt má veľkú dôležitosť, lebo ponúka určitú voľnosť pri voľbe zloženia, a tým aj možnosť napr. zvýšiť podiel spevňujúcej fázy, alebo zlepšiť vlastnosti matrice.

Popis vzoriek a experimentálnych metód

Eutektické kompozity $Al_2O_3 - (Y_2O_3)$ ZrO₂ boli pripravené Stepanovovou/EFG metódou [6] v tvare tyčiniek s priemerom niekoľko milimetrov a dĺžkou až 30 centimetrov so zložením:

1) $Al_2O_3 - 40 \text{ mol.}\% \text{ Zr}O_2 - 1 \text{ mol.}\% \text{ Y}_2O_3$

- 2) $Al_2O_3 41,3 \text{ mol.}\% \text{ Zr}O_2 1,7 \text{ mol.}\% \text{ Y}_2O_3$
- 3) $Al_2O_3 39,2 \text{ mol.}\% \text{ Zr}O_2 2,2 \text{ mol.}\% \text{ Y}_2O_3$
- 4) $Al_2O_3 35 \text{ mol.}\% \text{ Zr}O_2 2 \text{ mol.}\% \text{ Y}_2O_3$.

Použité rýchlosti rastu boli v intervale (10 ÷ 80) mm/hod. Mikroštruktúra uvedených materiálov bola pozorovaná v priečnych i pozdĺžnych rezoch vzhľadom na smer rastu pomocou rastrovacej elektrónovej mikroskopie. Fázové zloženie bolo zistené rtg difrakciou pomocou CuK_{α} a Co žiarenia na práškoch získaných drvením niekoľkých vzoriek.

Výsledky

Pomocou rtg difrakčnej analýzy sa zistilo, že v štruktúre eutektických kompozitov $Al_2O_3 - (Y_2O_3)$ ZrO₂ sa nachádzajú tieto fázy: hexagonálny Al_2O_3 a monoklinický, tetragonálny, alebo kubický ZrO₂. Pri nízkom obsahu ytria (zloženie 1) bola časť ZrO₂ stabilizovaná v tetragonálnej forme, zvyšná časť počas tuhnutia prešla do monoklinickej formy. Pri strednom obsahu ytria (zloženie 2) bola zistená prítomnosť tetragonálnej a kubickej fázy ZrO₂, pri vyššom obsahu ytria (zloženie 3, 4) iba kubickej fázy ZrO₂.

Obr. 1 Celulárna mikroštruktúra eutektických kompozitov $Al_2O_3 - (Y_2O_3)$ ZrO_2 , vzorka s vyšším obsahom ytria (zloženie 3), rýchlosť rastu 40 mm/h; priečny rez, (tmavá fáza Al_2O_3 , svetlá fáza ZrO_2)

Obr. 2 Mikroštruktúra eutektických kompozitov $Al_2O_3 - (Y_2O_3)$ Zr O_2 , v pozdĺžnom reze

Obr. 3 Morfológia fázy ZrO₂ v eutektickej kolónii, pozdĺžny rez

Obr. 4 Fazetované eutektické kolónie vo vzorke so stredným obsahom ytria (zloženie 2), rýchlosť rastu 60 mm/h; priečny rez

Obr. 5 Morfológia fázy ZrO₂ vo fazetovanej eutektickej kolónii, pozdĺžny rez

Obr. 6 Celulárne dendrity Al₂O₃ vo vzorke s hypoeutektickým zložením (zloženie 4), priečny rez

Obr. 7 Dendriticky vylúčené ZrO₂ vo vzorke s hypereutektickým zložením (zloženie 2); priečny rez

Obr. 8 Vrstvička Al₂O₃ na dendriticky vylúčenom ZrO₂

Mikroštruktúra uvedených kompozitov je celulárna, pozostáva z eutektických kolónií, medzi ktorými sa nachádzajú hrubé rovnoosé častice Al_2O_3 a ZrO_2 (obr. 1). Hoci eutektické kolónie sú predĺžené v smere rastu (obr. 2), fáza ZrO_2 v kolóniách je v tvare krátkych vlákien alebo lamiel rôzne odklonených od smeru rastu kompozitu (obr. 3). Vznik takejto mikroštruktúry je spojený so zakrivením kryštalizačného frontu jednak na makroskopickej úrovni bočným odvodom tepla, jednak na mikroskopickej úrovni vplyvom hromadenia ytria pred čelom kryštalizačného frontu [7]. Pri vyšších rýchlostiach rastu a menšom obsahu Y_2O_3 má fáza Al_2O_3 rastúca v smere [0001] tendenciu k fazetovaniu kryštalizačného frontu v rovinách $\{10\overline{11}\}$, čo vedie k vytváraniu tzv. fazetovaných eutektických kolónií [8] (obr. 4).

Hoci v blízkosti faziet sú vlákna ZrO₂ pomerne dobre usporiadané v jednom smere, ich dĺžka nepresahuje niekoľko mikrometrov (obr. 5). Keďže vedúcou fázou eutektickej premeny je Al₂O₃, v prípade hypereutektického zloženia taveniny (zloženie 2) sa na prvotne vylúčených dendritoch ZrO₂ (obr. 7) vytvorila súvislá vrstvička Al₂O₃ ako substrát, na ktorom prebiehala nukleácia a rast eutektika (obr. 8). V prípade hypoeutektického zloženia taveniny (zloženie 4) najskôr vznikajú celulárne dendrity Al₂O₃, okolo ktorých vznikajú fazetované eutektické kolónie (obr. 6).

Záver

Kvôli získaniu mikroštruktúry optimálnej z hľadiska vlastností eutektických kompozitov pripravených riadenou kryštalizačného frontu. V systéme $Al_2O_3 - (Y_2O_3)$ ZrO₂ je riadiacou fázou eutektickej premeny Al_2O_3 , k zakriveniu kryštalizačného frontu dochádza najmä v dôsledku hromadenia ytria pred kryštalizačným frontom. Následkom toho vznikajú eutektické kolónie, ktoré obsahujú fázu ZrO₂ vo forme krátkych vlákien alebo lamiel rôzne odklonených od smeru rastu. Pri vyšších rýchlostiach rastu a menších obsahoch ytria sa vytvárajú fazetované eutektické kolónie. Ak sa zloženie taveniny odlišuje od eutektického, vylúči sa prebytočné množstvo jednej fázy vo forme dendritov (ZrO₂) alebo celulárnych dendritov (Al₂O₃).

Literatúra:

- [1] WAKU, Y. Mechanical properties and thermal stability of oxide eutectic composites at high temperatures. In *Materials and Manufacturing Processes*, 1998, 13, 6, p. 841.
- [2] SAYIR, A., FARMER, S.C. The effect of microstructure on mechanical properties of directionally solidified Al₂O₃ / ZrO₂ (Y₂O₃) eutectic. In *Acta Materialia*, 2000, 48, p. 4691.
- [3] SCHNEIDER, H.G., RUTH, V., KORMÁNY, T. Advances in epitaxy and endotaxy. Budapest: Akadémiai Kiadó, 1990.
- [4] KURZ, W., FISCHER, D.J. Fundamentals of solidification. 3. ed., Switzerland: Trans.Tech.Publications Ltd, 1989.
- [5] ASHBROOK, R.L. Directionally solidified ceramic eutectics. In J. Am. Ceram. Soc., 1977, 60, 9-10, p. 428.
- [6] Borodin, V.A., Starostin, M.Yu., Yalovets, T.N. Structure and related mechanical properties of shaped eutectic Al₂O₃-ZrO₂(Y₂O₃) composite. In *Journal of Crystal Growth*, 1990, 104, p.148-153.
- [7] STAROSTIN, M.J. Control of the microstrucure at the eutectic solidification. In: *COMATTECH '99*, Bratislava: Vydavateľstvo STU, 1999.
- [8] STAROSTIN, M.J., GNESIN, B.A., YALOVETS, T.N. Microstructure and crystallographic phase textures of the alumina-zirconia eutectics. In *J. Cryst. Growth*, 1997, 171, p.119.