NIKLOVÉ ŽIARUPEVNÉ ZLIATINY: TEPELNÁ EXPOZÍCIA ŽIARUPEVNÝCH ZLIATIN SPEVNENÝCH VLÁKNAMI

Ni - BASE SUPERALLOYS: THERMAL EXPOSURE OF FIBRE RENIFORCED SUPERALLOY

Maroš MARTINKOVIČ

Autori: Doc. Ing. Maroš Martinkovič, PhD. Pracovisko: Katedra materiálového inžinierstva, Materiálovotechnologická fakulta STU Adresa: J. Bottu 23, 917 24 Trnava, Slovensko Tel.: +421 (0)33 5521 119 Fax: +421 (0)33 5521 119 E-mail: <u>martinko@mtf.stuba.sk</u>

Abstract

The utilization of tungsten fibre reinforced superalloy CMSX required great thermal stability of matrix-wire system. Annealing at 1100°C for 10 hours affected no structure changes, annealing at 1300 °C for 3 hours in vacuum decreased heterogenity of matrix dendridic segregation. During this processing recrystalization of the fibre was observed. Thermal cycling (1100°C air / 25°C H₂O) of the composite induced fracture of the fibre and matrix too (after 25 cycles).

Použitie zloženého materiálu s kovovou matricou z niklovej žiarupevnej zliatiny spevnenej kontinuálnym volfrámovým vláknom vyžaduje vysokú teplotnú stabilitu systému vláknom matrica. Žíhanie pri teplote 1100°C 10 hodín neprinieslo výrazné zmeny v štruktúre, žíhaním pri 1300°C 3 hod vo vákuu sa dosiahlo výrazné zvýšenie homogenity štruktúry matrice. Došlo však k zhrubnutiu zrna volfrámového vlákna. Tepelné cyklovanie zloženého materiálu (1100°C vzduch / 25°C H_2O) sa po 25 cykloch prejavil vznikom trhlín vo vlákne a tiež v matrici.

Key words

superalloys, nickel alloys, heat exposition, harden fibre, heat treatment, tungsten fibre, composites

zliatiny žiarupevné, zliatiny niklové, expozícia tepelná, vlákna spevnené, spracovanie tepelné, vlákna volfrámové, materiály zložené

Úvod

Použitie zloženého materiálu (ZM) spevneného W vláknom s matricou zo žiarupevnej zliatiny (ŽPZ) sa javí ako veľmi nádejný pre použitie pri vysokých teplotách, pričom sa predpokladá prevádzková teplota asi o 150°C vyššia, než pri použití nespevnej ŽPZ [1]. Za

takýchto podmienok pri takomto type materiálu je veľmi dôležitým faktorom vplývajúcim výrazne na vlastnosti ZM stabilita systému vlákno-matrica, pričom netreba zabúdať i na vlastnosti samostatných zložiek ZM. Heterogénne sústavy v dôsledku rozdielnych vlastností svojich zložiek sú za podmienok tepelnej expozície vystavené oveľa väčšiemu namáhaniu v porovnaní s homogénnymi sústavami. Už i rozdielny koeficient teplotnej rozťažnosti (KTR) tuhého roztoku γ a precipitátov γ' NiŽPZ pri zmene teploty generuje určité vnútorné napätie, v sústave ZM s matricou z NiŽPZ spevnenou kontinuálnym W vláknom bude tento jav veľmi výrazný, nakoľko koeficient teplotnej rozťažnosti má NiŽPZ CMSX-3 asi 3-krát väčší v porovnaní s W vláknom.

Žíhanie zloženého materiálu

Vzorky ZM z NiŽPZ spevnené kontinuálnym W vláknom (charakteristika materiálu a spôsob výroby je uvedený v predchádzajúcom článku v č. 2/2004) v tvare valca s priemerom 6 mm a výškou 10 mm sa žíhali pri teplote 1100°C na vzduchu. V pozdĺžnom smere sú vlákna dokonale pokryté matricou, v priečnych rezoch na koncoch vzorky sú okraje vlákien v styku s atmosférou. Pri žíhaní nastala výrazná oxidácia a rozpadnutie okrajov W vláken. Po 10 h žíhania sa na priečnom reze v strede vzorky nepozorovala žiadna reakcia medzi vláknom a atmosférou. Na rozhraní vlákno-matrica neboli zaznamenané žiadne výrazné zmeny, bez zmien zostala i matrica a vlákno. Priečny rez vzorky žíhanej 10 h pri 1100°C je na obr. 1. Dalo sa však očakávať, že pri vyššej teplote nastanú výrazné zmeny.

Obr. 1 Priečny rez vzorky žíhanej 10 h pri 1100°C, OM

To sa potvrdilo po žíhaní pri 1300°C vo vákuu, čas žíhania bol 3 hodiny. Účelom žíhania bola snaha homogenizovať štruktúru matrice - odstrániť dendritickú segregáciu a rozpustiť v čo najväčšej miere prítomné eutektické útvary γ/γ' . Rozpustili sa dendrity a eutektické útvary, matrica sa homogenizovala. Na rozhraní vlákno matrica sa nepozorovali žiadne výrazné zmeny voči štruktúre v stave po odliatí - vznik novej fázy, výraznejšie rozpúšťanie W vlákna v matrici. Nastalo však výrazné zhrubnutie zrna W vlákna. Štruktúra ZM po tepelnom spracovaní (TS) je na obr. 2, detail rozhrania vlákno-matrica na obr. 3 (OM – optická mikroskopia, REM – rastrovacia elektrónová mikroskopia).

Obr. 2 Štruktúra vzorky ZM po žíhaní 3h 1300°C vo vákuu, OM

Obr. 3 Detail rozhrania vlákno-matrica v ZM, REM

Pri tomto type materiálu je prínos homogenizácie matrice k vlastnostiam ZM menej výrazný, nakoľko dôležitejšiu úlohu zohráva spevňujúca fáza. A práve v dôsledku zhrubnutia zrna pri TS nastane degradácia vlastností spevňujúcich vláken, čo sa zrejme prejaví negatívne na vlastnostiach ZM napriek zlepšeniu štruktúry matrice. Preto v ďalšom bola pozornosť venovaná ZM bez TS – v stave po odliatí.

Tepelná únava zloženého materiálu

Napätia generované teplotným gradientom v ZM sú zapríčinené rozdielnym koeficientom teplotnej rozťažnosti vlákna a matrice [2]. Pri opakujúcej sa zmene teploty sústavy dochádza k jej namáhaniu tepelnou únavou. Pre odolnosť ZM voči tepelnej únave je dôležité, aby matrica mala dostatočnú ťažnosť a tepelné pnutia sa odstránili jej plastickou deformáciou [1]. Koeficient teplotnej rozťažnosti v rozmedzí teplôt 20 °C až 1100 °C ŽPZ má hodnoty od

15,8.10⁻⁶ do 19,3.10⁻⁶ 1/K, W má túto hodnotu asi 5.10⁻⁶ 1/K. Z toho dôvodu je pri ohreve matrica namáhaná tlakovým napätím, pri ochladzovaní ťahovým napätím. Vlákno je namáhané opačne. Opakované teplotné zmeny môžu preto spôsobiť poškodenie tepelnou únavou. Z toho dôvodu sa vykonali skúšky odolnosti ZM W-CMSX3 voči tepelnej únave. Vzorky ZM s priemerom 6 mm a dĺžkou 15 mm sa zohrievali v elektrickej odporovej peci na vzduchu vyhriatej na teplotu 1100°C 2,5 minúty a následne ochladzovali do vody s teplotou 20°C. Účinok tepelnej únavy sa sledoval na priečnom reze v strede vzorky. Po 25 cykloch sa na priečnom reze vzorky na rozhraniach vlákno-matrica objavili na niektorých miestach praskliny, ktoré prebiehali povrchovou vrstvou vlákna a matricou. Prasklina prebiehajúca povrchovou vrstvou vlákna a matricou ZM je na obr.4. V okolí prasklín sa v matrici objavila svetlá vrstva (viď. obr. 4, 5, 6 a 7), o ktorej by sa mohlo usudzovať, že sa jedná o oxidickú vrstvu, ktorá vznikla reakciou matrice s kyslíkom, ktorý sa dostal prasklinou do inak uzavretého priestoru v miesta porušenia.

Obr. 4 Prasklina v ZM po 25 cykloch skúšky tepelnej únavy, REM

Po 50 cykloch nastalo porušenie a vznikla predpokladaná oxidická vrstva po celom obvode vlákna, čo dokumentuje priečny rez vzorkou ZM na obr. 7. Podľa publikovaných údajov [3] o podobných materiáloch porušenie na rozhraní W-ŽPZ v ZM nastalo pri podobných podmienkach po 25 až 35 cykloch, vo viacerých prípadoch až oveľa neskôr (po 100 cykloch a viac). Lineárna EDX analýza na REM (celkom 3 merania analyzátorom OXFORD LINK INSTRUMENT 3.1 na mikroskope JEOL 5800) preukázala prítomnosť kyslíka v oblasti porušení, taktiež ale i zvýšený obsah Cr, a najmä Ni v povrchovej vrstve W vlákna, čím sa v podstate potvrdili výsledky z bodového EDX spektra vlákna v tepelne neexponovanom ZM (pozri predchádzajúci článok v č. 2/2004).

Obr. 5 Štruktúra ZM po 25 cykloch skúšky tepelnej únavy, a - OM, b - REM

Obr. 6 Detail praskliny z obr. 4, REM

Obr. 7 Štruktúra ZM po 50 cykloch skúšky tepelnej únavy, OM

Diskusia dosiahnutých výsledkov a záver

ZM s matricou s NiŽPZ CMSX 3 spevnenou kontinuálnym volfrámovým vláknom v stave po odliatí má matricu z výrazne heterogénnou štruktúrou. Je tvorená dendritmi orientovanými rôznymi smermi, na niektorých miestach v medzidendritických priestoroch sú vylúčené eutektické útvary. Žíhanie pri teplotách do 1100°C ani po 10 hodinách neprinieslo výrazné zmeny v štruktúre ZM. Niekoľkonásobne kratšie žíhanie (3 hod.) pri 1300°C spôsobilo výrazné zvýšenie homogenity štruktúry matrice. Odstránila sa dendritická segregácia matrice, rozpustili sa eutektické útvary. Štruktúra matrice je tvorená tuhým roztokom γ , v ktorom sa nachádza veľké množstvo precipitátov γ ' kuboidálneho tvaru s maximálnym rozmerom približne 0,3 µm (obr. 3). Pri TS však v dôsledku rekryštalizácie nastalo zhrubnutie zrna volfrámového vlákna.

Pri TS odlievaných (konvenčne alebo riadenou kryštalizáciou) NiŽPZ bez spevňujúcich vlákien sa používa trojstupňové TS (pozri predchádzajúci článok v č. 1/2003), ktorého cieľom je dosiahnuť odstránenie dendritickej segregácie a eutektických útvarov v dôsledku solidifikačného procesu a zabezpečiť vylúčenie precipitátov γ ' požadovaných parametrov, pričom dôležitú úlohu zohráva rýchlosť ochladzovania v objeme zliatiny [4]. Pri tomto ZM bola dosiahnutá homogénna štruktúra matrice bez dendritickej segregácie a bez prítomnosti eutektických útvarov a vylúčenie kuboidálnych precipitátov γ ' v tuhom roztoku matrice jednostupňovým procesom TS, čo by sa dalo zdôvodniť vyššou tepelnou vodivosťou ZM [3] oproti takému istému materiálu bez spevňujúcich vlákien. Výrazné zhrubnutie štruktúry volfrámového vlákna v priebehu TS by sa zrejme dalo obmedziť použitím kvalitnejšieho materiálu, napr. volfrámového vlákna legovaného 3% rhénia, pri ktorom výrobca prezentuje vyššie rekryštalizačné teploty [5].

Veľký rozdiel KTR vlákna a matrice sa prejavil vznikom trhlín po 25 cykloch ohrevu a ochladzovania (1100°C vzduch / 25°C H₂O). Trhlina bola lokalizovaná v podpovrchovej vrstve W vlákna, trhliny v susedných vláknach boli spojené naprieč materiálom matrice. Lokalizácia trhliny môže byť ovplyvnená prítomnosťou ďalších napätí v štruktúre materiálu, pretože okrem tepelnej únavy zapríčiňuje rozdielnosť koeficientov teplotnej rozťažnosti i vznik zvyškových napätí. Ich prítomnosť môže výraznou mierou ovplyvniť vlastnosti ZM, čomu treba venovať patričnú pozornosť.

Literatúra:

- [1] CHAWLA, K., K. Metal matrix composites. In *Chou,T.W. Structure and Properties of Composites*. Wienheim-New York: VCH, 1993, s. 172.
- [2] ANANTH ,C.R., CHANDRA,N. Numerical modeling of fibre push-out. In *Journal of Composite Materials*, 29, 1995, s. 1489.
- [3] PETRASEK, D.W., SIGNORELLI, R.A., CAUFFIELD, T., TIEN, J.K. Fibre reinforced superalloy. In *Tien, J., K. Superalloys Supercomposites and Superceramics*. Boston: Academic Press, 1989, s. 625.
- [4] PINKE,P. Štúdium účinku riadenej kryštalizácie, tepelného spracovania a tepelnonapäťovej expozície žiarupevnú niklovú zliatinu CMSX 3. Trnava: KDP, MtF STU, 1995.
- [5] The Wire of Brilance. Lumametall, Kalmar, Sweden, 1998.
- [6] Battezzati, Livio Kusý, Martin, Rizzi, Paola Ronto, Viktora: Devitrification of Al-Ni Rare earth amorphous alloys. In: Journal of Materials Science. – ISSN 0022-2461, 1573-4803. – Vol. 39, No 12 (2004), s. 3927-3934.
- [7] Kusý, Martin: Vplyv rozstrekovania taveniny a termickej expozície na mikroštruktúru a fázové zloženie rýchlo stuhnutých častíc prášku zliatiny Ch3F12 : Dizertačná práca. Trnava: MTF STU v Bratislave, 2002.
 – 182 s.
- [8] Kusý, Martin Battezzati, Livio Riello, Pietro: Partial substituttion of Ni or La with Zr or Ti in ternary amorphous Al87Ni7La6 [2004-02-12]. In: PROSIZE: Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors [on-line]. – 2004 (https://www.arw.sav.ak)