Recent developments in nuclear safety research

Recent developments in the field of nuclear safety research

Udo Rindelhardt, Frank-Peter Weiß

Forschungszentrum Rossendorf

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

Topical examples of nuclear safety research

For existing plants:

Analysis of hypothetical reactivity transients due to boron dilution in PWRs

For future plants:

Analysis of the RPV during a severe core melt accident with corium in the lower plenum

For final disposal:

Transmutation of Pu and minor actinides and consequences to final disposal

Boron dilution transients

Forschungszentrum Rossendorf

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

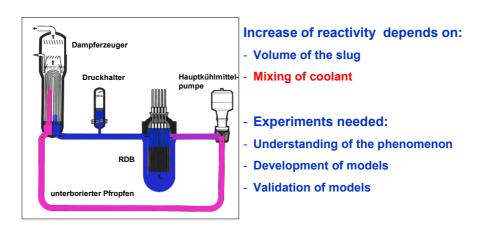
Boron dilution transients in PWRs: cause of problem

One disadvantage of using dissolved boron as neutron absorber:

- > Unintended or unavoidable decrease of boron concentration
 - ➔ increase of reactivity
 - ➔ power excursion = boron dilution transient

> Initiators:

Accumulation of underborated coolant in SG or loop:

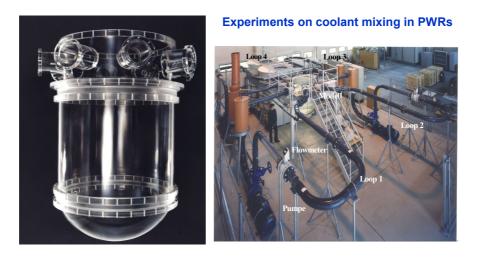

- ➔ malfunction of chemical / volume control system
- ➔ LOCA with partial failure of HPIS

unrecognized secondary to primary circuit leak in the SG

Start of coolant circulation forwards plug towards the core

Institute of Safety Research

Scheme: Boron dilution scenario

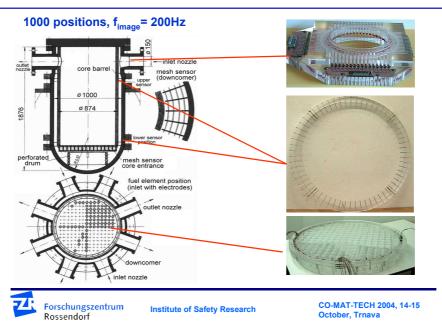


Forschungszentrum Rossendorf

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

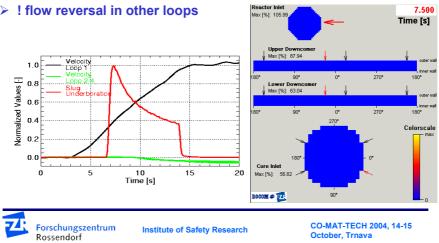
ROCOM: <u>Ro</u>ssendorf <u>Co</u>olant <u>Mixing</u> Test Facility


Forschungszentrum Rossendorf

Institute of Safety Research

ROCOM: Rossendorf Coolant Mixing Test Facility

- > 1:5 (lin. scaling) 4-loop model of KONVOI-PWR
- > seperately controlable pumps in all 4 loops
- > operated with deionate at room temperature
- simulation of density differences (boron concentration + temperature) by adding alcohol or sugar
- > observation of mixing possible by tracering the plug with salt
- measurement of the propagation (= mixing) of the tracered plug by means of electrical conductivity measurements
- wire mesh sensors



Wire mesh sensors in ROCOM

Initial and boundary conditions:

- > boron free coolant plug in pump loop seal
- > start of 1_{st} MCP, full mass flow after 14 s
- > ! flow reversal in other loops

CFD calculations

Stream lines calculated by CFX-codes

- slug "surrounds" the core barrel
- entering the core at the opposite region

Institute of Safety Research

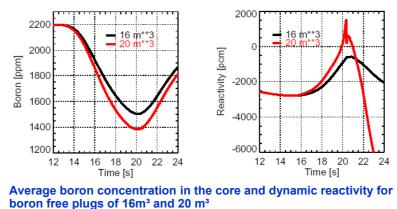
CO-MAT-TECH 2004, 14-15 October, Trnava

7.500

Coupled NK-TH core calculation

The model:

- > coupled core calculations using DYN3D resp. DYN3D-ATHLET
- > calculation of mixing by CFD or simplified models


Initial and time dependent boundary conditions:

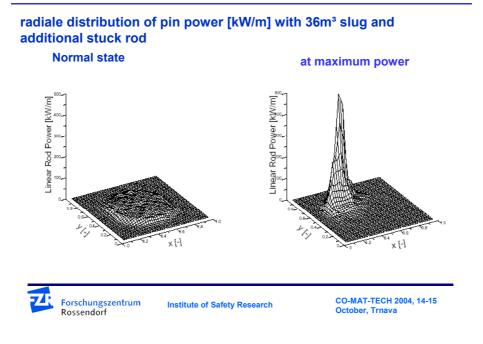
- > initially stagnant fluid + pump start-up within 14 s
- > reactor hot sub-critical at begin of transient
 - all rods inserted, except the most effective
 - xenon/samarium like at the end of full power
 - T_{coolant} = 192°C; C_{Bcoolant} = 2200 ppm
 - T_{slug} = 210°C; C_{Bslug} = 0 ppm

Z

Forschungszentrum Institute of Safety Research Rossendorf CO-MAT-TECH 2004, 14-15 October, Trnava

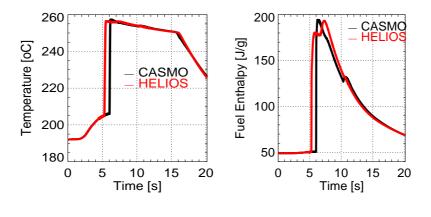
Results of transient calculations by DYN3D

bron nee plugs of rom and 20 m



Doppler feed back

Forschungszentrum Rossendorf


Institute of Safety Research

Results of transient calculations by DYN3D

Forschungszentrum Rossendorf

Institute of Safety Research

 Resume: Safety assessment of boron dilution transients

 Models for coupled core calculation and boron tracking in the core available

 Calculation of boron concentration distribution at core entrance with

 • pulse dominated mixing scenarios (starting MCP) possible by semi-empirical and CFD models with sufficient accuracy

 • density driven scenarios

 • by semi-empirical methods

 • or scaling of experiment

 • improvement of turbulence models for CFD-codes necessary to consider anisotropy and turbulence generation by bouyancy

Forschungszentrum Rossendorf

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

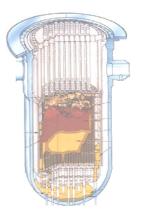
Topical examples of nuclear safety research

Behaviour of RPV during core melt and corium in the lower plenum

Forschungszentrum Ins Rossendorf

Institute of Safety Research

Why is the RPV so important?

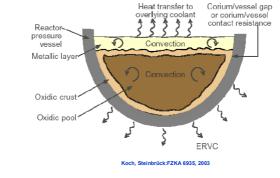

- is the most important barrier against the release of radioactivity into contaiment
- Ioss of this barrier would lead to complete destruction of core and release of total radioactive inventory into containment during core melt accidents
- since TMI-2 accident in Harrisburg, USA, 1978: intensive research on severe accident phenomena world-wide

Forschungszentrum Institute of Safety Research Rossendorf CO-MAT-TECH 2004, 14-15 October, Trnava

Behaviour of RPV with corium in the lower plenum

- 1. How could the RPV stand those ca. 20t corium melt in the LP?
- 2. When and how would the RPV have failed with progressing core melt?

Koch, Steinbrück:FZKA 6935, 2003

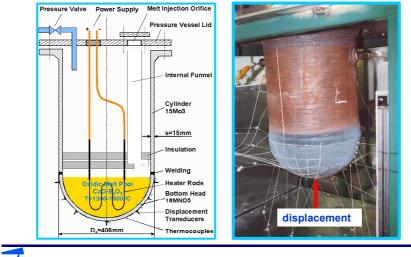


Forschungszentrum Instit Rossendorf

Institute of Safety Research

Important phenomena to be studied

- Heat transport in debris
- Melt pool formation, convection in melt pool, formation of crusts
- Stratification in melt pool and focussing of heat load (knife effect)
- Gap formation between debris / crust and RPV wall, gap cooling
- Thermo-mechanical and chemical loads to the RPV

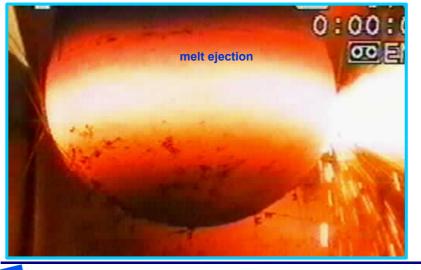

- external RPV cooling

7

Forschungszentrum Institute of Safety Research Rossendorf CO-MAT-TECH 2004, 14-15 October, Trnava

Behaviour of RPV with corium in the lower plenum

1:10 FOREVER-experiments at RIT Stockholm: french steels, melt simulant CaO- B_2O_3

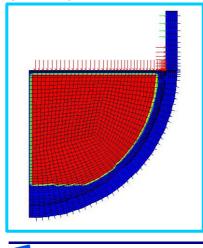


Forschungszentrum Institute Rossendorf

Institute of Safety Research

RPV driven to failure by combined heat and pressure loads:

Forschungszentrum Rossendorf

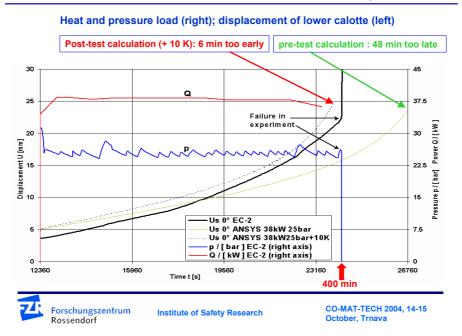

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

Behaviour of RPV with corium in the lower plenum

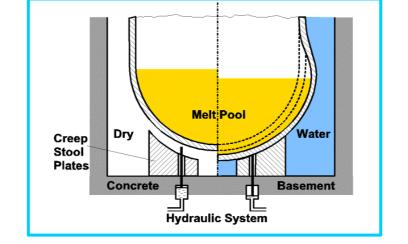
Validation of codes

pre- and post-test calculations using an ANSYS-FLOTRAN-model:



Model includes, a.o.:

- heat source density (red)
- convection in melt
- heat radiation (arrows)
- heat conduction
- crust formation (dynamic)
- viscoplastic strain of RPV (creep model)
- damaging of the wall material till failure


Forschungszentrum Rossendorf

Institute of Safety Research

Behaviour of RPV with corium in the lower plenum

Creep stool: proposal for a SAM - technology even for existing plants

Institute of Safety Research

Critical evaluation of the state of the art knowledge:

- Space dependent composition of the melt not fully clear: stratification and thermal focussing effect
- Coolability of debris and melt in LP not fully understood: crust formation and critical heat current with gap cooling
- Knowledge on the interaction of melt and RPV insufficient: chemical-eutectic interaction (MASCA)

Why could the TMI-2 RPV calotte stand the melt ? Question keeps not answered!

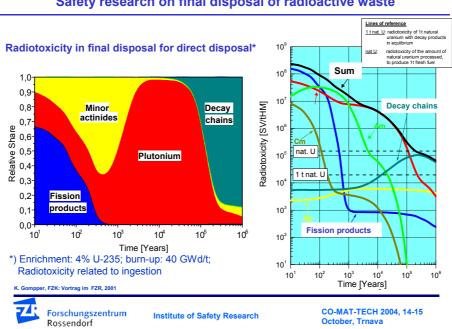
Forschungszentrum Ins Rossendorf

Institute of Safety Research

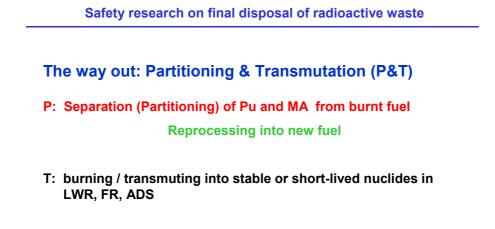
CO-MAT-TECH 2004, 14-15 October, Trnava

Safety research on final disposal of radioactive waste Transmutation of long-lived radionuclides

Transmutation of long-lived radionuclides



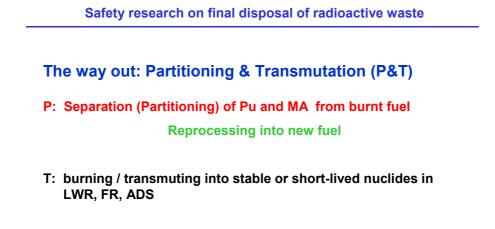
Forschungszentrum Ins Rossendorf


Institute of Safety Research

Where does the problem come from?

Waste emergence in Europe		Disposal
Reactors: Installed power:	145 125 GWe	Direct final disposal
Burnt fuel: Plutonium: MA (Np,Am,Cm): Fission products:	2500 t/a 25 t/a 3,5 t/a 100 t/a	Interim and final storage of burnt fuel elements
Long-lived share:	3,1 t/a	K. Gompper, FZK: Vortrag im FZR, 2001
Forschungszentrum Rossendorf	Institute of Safety	Research CO-MAT-TECH 2004, 14-15 October, Trnava

Safety research on final disposal of radioactive waste

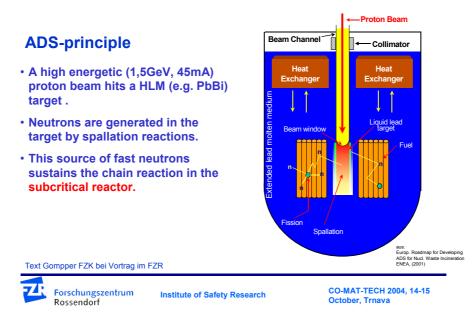

Influence of P&T on radiotoxicity in the final disposal

Partitioning	level of na	Radiotoxicity at level of nat. uranium (after years)		10 ⁹ Gompper FZK Vortrag FZR 10 ⁸ 10 ⁷ 10 ⁷
none	200.000	ca.70 Mio		10 ⁶ Nat. U 10 ⁵ 10 ⁴ 1 t Nat. U
99 % Pu	11.300	97.000	t Nat. U	Ar 10 ⁵ Nat. U
99,9 % Pu	6.500	74.000	:	
99 % Pu, MA	1100	26.500		10 ²
			J	10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ 1
				Time [Years]

Forschungszentrum Rossendorf

Institute of Safety Research

Influence of P&T on radiotoxicity in the final disposal


Partitioning	level of na	Radiotoxicity at level of nat. uranium (after years)		10 ⁹ Gompper FZK Vortrag FZR 10 ⁸ 10 ⁷ 10 ⁷
none	200.000	ca.70 Mio		10 ⁶ Nat. U 10 ⁵ 10 ⁴ 1 t Nat. U
99 % Pu	11.300	97.000	t Nat. U	Ar 10 ⁵ Nat. U
99,9 % Pu	6.500	74.000	:	
99 % Pu, MA	1100	26.500		10 ²
			J	10 ¹ 10 ² 10 ³ 10 ⁴ 10 ⁵ 1
				Time [Years]

Forschungszentrum Rossendorf

Institute of Safety Research

Safety research on final disposal of radioactive waste

Safety research on final disposal of radioactive waste

Why ADS ?

1. Lowest circulating TRU-inventory compared with other strategies:

safety relevance for accidents leading to release of radioactive materials

2. Burning of the existing TRU-inventories in ADS when finishing the use of fission for nuclear energy production (phase out strategy)

R&D needs

- Improvement of partitioning technologies
 - better separation quality, e.g. between MA and Lanthanides
 - development of heat and irradiation resistent extraction technologies
- > new fuels for higher burn-ups and with high content of actinides
- more accurate measurement of neutron crosss sections of LL radionuclides for optimised design of transmuters
- > development of proton accelerators of high power and reliability

EU-IP EUROTRANS

Forschungszentrum Rossendorf

Institute of Safety Research

CO-MAT-TECH 2004, 14-15 October, Trnava

The end

Thank you for your attention!

Forschungszentrum Institute of Safety Research Rossendorf