
 89

INTEGRATION FRAMEWORK FOR USING PATTERNS IN MODEL

DRIVEN DEVELOPMENT

Ruben PICEK

Author: Ruben Picek
Workplace: Faculty of Organization and Informatics, Varaždin, University of

Zagreb,
E-mail: ruben.picek@foi.hr

Abstract

Awareness of software's importance in today's environment each day is growing. As new
types of applications appears, need for modern, high quality methodological ways of their
development is rising. Last few years researches in software industry move in different
directions. This doctoral dissertation is based on currently most skeptical software
development paradigm called Model Driven Development (MDD). The idea is examine the
possibilities of using patterns in context of MDD paradigm. Because in the methodological
approach of software development is necessary to use some kind of development process,
intention is discover applicability of existing development process for MDD paradigm. Then,
in the context of patterns it is necessary to define what kind of patterns is possible to use, and
in what kind of form patterns has to be defined to use them for MDD. Furthermore, when this
criteria's are satisfied, using patterns in context of MDD paradigm to provide automated SW
development –what that paradigm promote, it is necessary to define framework for using
patterns in MDD paradigm and then integrated its with modern software development
methodology suitable for model driven development.

AN OVERVIEW OF SOFTWARE ENGINEERING

 In software development during 90's two paradigms were dominated. In the early 90's it
was popular the concept of Computer Aided Software Engineering based on CASE tools and
4GL while in the second half of the decade strong influence in software industry take object
oriented (OO) paradigm. Although it wasn’t fulfilled all expectation, OO paradigm preserve
to nowadays and during this years becomes a foundation for: component based development
(CBD), OO languages, modeling notation today known as UML and philosophy called round
trip engineering. Today's situation in software industry pointing that scenario repeats.
Although use of OO development solves many problems in today's SW industry, evolution in
all segments of society causes new challenges. Requirements of new and/or existing systems
are growing, systems are complex and it is hard to build them on time and on budget. As an
answer to these challenges, a wide spectrum of new approaches occurred, varying from
buzzwords to comprehensive methodologies. The most important are: Service Oriented
Architecture (SOA), Model Driven Development (MDD), Agile Development, Software
Product Lines (SPL), Model Driven Architecture (MDA) and Software Factories (SF).

 90

Actually, current state in SW industry can be called paradigm shift like it was in 90's, when
development shifts from structured to object oriented. Today's modern development is
directed toward new paradigm called model driven development. Currently paradigm have
high position in software industry. The idea of MDD paradigm is using models, as primary
artifacts, not only for documenting software but also for transforming into programming code
with a given level of automation. Some of the above buzzwords are concrete realization of
this paradigm. Paradigm combines techniques like domain analysis, meta modeling,
generation based on the models and use of modeling languages. All this shows how much
industry all this years growth despite problems and new challenges which it were surrounded.
Although in academic community the term is very well established, concrete realization in
industry encounter on problems and it is not possible to predict evolution of MDD in future.
One of the biggest problem is automated transformations development. Many organization
which develop applications will have to face it with challenge of developing software using
MDD paradigm to decide will they go this way or not. Currently this organization are in the
initial phases of adopting this paradigm with a big amount of skepticism.

Beside all this, in SW industry are present myths related to MDD paradigm. Some of
them have long history while the roots of others can be traced from last paradigms (origin in
the 80's and 90's and related to experiences with CASE tools) or they are not actually myths
but the reality which is now being transposed onto model-driven approaches in general.

Most frequently mention myths are [4]:

- Model always equals UML model.
- Modeling always implies having all specifications in the form of visual models, at the

same level of abstraction as the implementation source code.
- Code generated from a model is ugly and not really suitable for human readers.
- Generated code has lower performance than handcrafted code.
- A generative approach ties you too strongly to a tool and a specific set of technologies
- Model-driven approaches are incompatible with the concept of agility.
- Model-driven is the same as CASE and we know it doesn't work.
- Regeneration is not practical and model and code will always get out of synch at some

point.
- It takes longer to write the generator than to hand-code everything.
- Adapting the generator to accommodate changes takes longer than manually changing

the generated code.
- Code generators are not object-oriented and code produced by code generators is not

object-oriented. It is always better to write an object-oriented framework than to write a
code generator. In fact, writing a code generator is a cop-out from good framework
design.

Parallel with OO paradigm, patterns have been successfully used in SW industry as
solution for recurrences problems which often appears in some context. When we today use
term pattern usually we think on design patterns, but in last few years patterns by their
definition and number evolve. So this new situations has to be examine. Furthermore when
today's software development process (heavily and light) is analyzed it can be notice that their
relation with model driven development is not defined. SW industry as well observe software
development from economic aspects and more and more all types of artefact are view as
reusable assets.

All aspects mention above, point out that are many question are still opened and it is
worth to examine some of them.

 91

MODEL DRIVEN DEVELOPMENT PARADIGM

 As already mention, in the last few years software development has been faced with many
challenges and as an answer to these challenges, a wide spectrum of new approaches
occurred, varying from buzzwords to comprehensive methodologies. One of the most
prominent paradigms is Model Driven Development (MDD). MDD represents a set of
approaches, theories and methodological frameworks for industrialized software
development, based on the systematic use of models as primary artifacts throughout the
software development cycle. It targets two roots of software crisis – complexity and ability to
change.

First of all, let us start with definition of MDD paradigm. The basic idea of this paradigm
is to move the development efforts from programming to the higher level of abstraction, by
using models as primary artifacts and by transforming models into source code or other
artifacts The ultimate objective is the automated development (fully or partly). According to
[17], MDD is a style of software development where models are primary software artifacts.
Other artifacts and code are generated from them, according to best practices. In [12], MDD is
defined as software engineering approach consisting of the application of models and model
technology to raise the level of abstraction at which developers create and evolve software,
with the goal of both simplifying and formalizing the various activities and tasks that
comprise the software life cycle. According to [5], MDD refers to a set of approaches in
which code is automatically or semi automatically generated from more abstract models, and
which employs standard specification languages for describing those models and the
transformations between them.

These definitions make clear that the focus of the MDD is a shift from the programming
to the modeling. Models are the key artifacts. Currently, models are mostly used as sketches
that informally convey some aspects of a system or they can be used as blueprints to describe
a detailed design that is then manually implemented [17]. Use of models as documentation
and specification is valuable, but it requires strict discipline to ensure that models are kept up
to date as implementation progresses. Time constraints mainly cause that the initial models
are not updated during the design and implementation, and inaccurate models are harmful. In
MDD, models are used not just as sketches or blueprints, but as primary artifacts from which
efficient implementations are generated, transforming models into programming code or other
artifacts characteristic to domain.

As described above, MDD shifts the emphasis of application development away from the
platform, enabling developers to design applications independent of the platform-level
concerns. Platform is the province of developers with the platform specific expertise. Platform
expertise is involved as late as possible, it means at transformations, rather than, being
rediscovered many times during a project. Likewise, decisions about the implementation
architecture are directly encoded in the transformation engine rather than documented as
architectural decisions [17].

According to Selic [14], the essence of model driven development is about two things.
One is abstraction, in terms of how we think about the problem and then how we specify our
solutions. Second thing that often gets forgotten is the introduction of more and more
automation into the software development, specifically by using computer based tools and
integrated environments.

MDD-style should enable automation to go much further. A software development project
needs to produce many non-code artifacts; some of these are completely or partially derivable
from models. The following list gives some common examples of artifacts that are generated
from models, but you can probably think of others [17]: documentation, test artifacts, build
and deployment scripts, other models, pattern application.

 92

According to the above mentioned definitions, the heart of MDD paradigm makes:
models, modeling and model transformation. Modeling and models are the central point of
contemporary software development. But, one fact related to models has to be emphasized.
There is a big difference of what models represent and how there are used. Traditional
models are just sketches, and blueprints for design. In order to be suitable for the MDD,
models must satisfy additional criteria – they must be machine readable. Machine-readability
of models is a prerequisite for being able to generate artifacts. There are two types of
transformations: model to model (M2M) and model to code (M2C). Automated model
transformations are the key for realization of the MDD idea.

Two leading realizations of MDD paradigm are: The Object Managements Group (OMG)
approach called Model Driven Architecture (MDA) and Microsoft's Software Factories (SF).
According to [12] it is too early to predict which, if any, of the current MDD approaches will
be accepted as an industrial standard.

BENEFITS OF THE MDD

According to [17], [15], MDD has the potential to greatly improve current practices in
software development. This potential manifests in overcoming the current challenges –
reducing the cost of development and increasing the consistency and quality of software.
Some advantages of an MDD paradigm are [17], [15]: increased developer productivity,
maintainability, reuse of legacy, adaptability, consistency, repeatability, improved stakeholder
communication, improved design communication, capture of domain knowledge, models as
long-term assets and ability to delay technology decisions.

CURRENT PROBLEMS

The primary goal in MDD paradigm is to raise the level of abstraction at which developers
operate. It should reduce both the amount of developer's efforts and the complexity of the
software artifacts that the developers use [12], [11]. Of course, there is always a trade-off
between simplification by raising the level of abstraction and oversimplification, where
details for any useful transformation are missing. As you can assume, problems are bound to
model abstractions at different stages of the software life cycle. The open issue is how to
transform a model at one level of abstraction, into a model or code at a lower level? In trying
to answer this question, new ones arise.

How to use models? Some developers use models only for sketching, others for
blueprinting while MDD community presumed models as programming language.

Which notation and modeling language should be used in order to provide automation?
The standardization of modeling notations is unquestionably an important step for achieving
MDD. Standardization provides developers with uniform modeling notations for a wide range
of modeling activities. In SW industry today, the Unified Modeling Language (UML) is a
standard language for specifying, visualizing, constructing, and documenting the artifacts of
software systems. The UML represents a collection of best engineering practices which have
been proven in the modeling of large and complex systems. Although UML is widely
recognized and used as modeling standard, it provoked a lot of criticism.

Is UML suitable as model programming language? The notion of UML 2.0 as a model
programming language is predicated on the belief that the use of higher levels of abstraction
will make developers more productive than current programming languages. Fowler [8],
discusses whether this opinion is true. He doesn't believe that graphical programming will
succeed just because it is graphical. Indeed he has seen several graphical programming
environments that failed - primarily because it was slower to use them than writing code.
(Compare coding an algorithm to drawing a flow chart for it.). Even if UML is more

 93

productive than programming languages, it will take the time to become accepted. Most of the
people for many reasons are not using programming language they consider to be the most
productive. Furthermore Greenfield et al. [10] argue that although UML 2.0 is a useful
modeling language, it is not an appropriate language for MDD, because UML is designed for
documenting and not for programming. They promote use of special-purpose, domain-
specific languages (DSL's). Clearly, UML or any other MDD language faces significant
hurdles to demonstrate sufficient value to satisfy the needs of all the different kinds of MDD
users.

According to [12], MDD creates other problems, like: redundancy, rampant round-trip
problems, moving complexity rather than reducing it and more expertise that is required.

SOFTWARE PATTERNS

Patterns in software development have short history. When in the beginning of 90's object
oriented paradigm appears, patterns has become a interesting area because they become a way
of realization object oriented main characteristics – reusability.

Term pattern can evoke a variety of interpretations and definitions mostly depending on
context of use. According to different authors [16], [7], [13], [15] pattern is a best practice
solution to a recurring problem for a given context. But each solution, algorithm or best
practice isn't pattern. Main characteristic of patterns is ability to use it all over again in
recurring problems (recurrence). Pattern encapsulate a designer's time, skills and knowledge
to solve a software problem and include all essential factors that pattern could be reused in
similar situations. Recurrence is not only pattern characteristics. Pattern must be suitable (fit)
for the problem and useful in given context. When recurrence is quantitative characteristic
which is shown by context and problem definition, suitability and usefulness are qualitative
characteristic where suitability clarify how the pattern will contribute to the problem solution,
while usefulness explains why pattern will be useful.

 Definition of software pattern used in this dissertation is: Software pattern is a recurring
structural concept used in context of software development which consists of problem
definition and best practice solution and can be applied on all levels of abstraction during
software development lifecycle.

In the context of software development, software pattern is reusable concept on higher
level of abstraction then lines of programming code, individual classes and components.
Patterns provide a very powerful way of improving today's software development by
identifying best practices and design expertise that can be captured in tools and then available
for reuse. Main advantages of using patterns in software development are [1]: improve
productivity, reduce development time, minimize complexity, increase quality, improve
governance, gain business agility, leverage IT skills, promote open standards, close the gap
between business and IT, improve cost. Two more advantages according to [2] are: improving
managing of developing projects and simplicity of software architecture.

PATTERN CLASSIFICATION AND STANDARDIZATION

Since beginning of their use in software industry, development, studying and use of

patterns have increasing trend. Their prominent use, impact to paying more intention to
pattern development and the result was quite number of new patterns in all segments of
software development. Each organization developed patterns organize in catalogs and place
them in own pattern repository. Different organizations have patterns which were suitable for
their way of work and used technology. Direct consequence of that is big number of different
structured patterns and absence of unified classification. On the basis of examine literature

 94

and new knowledge aim is make a fundamental classification of today known patterns and
propose new criteria for pattern classification.

Number of patterns exponentially grows, so not only the unified classification which will
contribute to quality development, faster findings and use is needed but also is needed a
initiatives for pattern standardization. Software industry itself evolves, so the model driven
approaches with idea of using models for automated development have bigger importance.
To include patterns in MDD scenario it is necessarily define a standardize way of patterns
organization, specification, implementation and packing.

Towards increasing the return on investment it is introduced term reusable software asset
which includes all types of different artifacts used in development process. Furthermore to
ensure their reusability and standardization, Reusable Asset Specification (RAS) was
developed for providing a standardize way of software asset archiving, searching, organizing,
specifying, implementing, packing and sharing. In dissertation it will be explore how patterns
can be observe as software asset and how to implement them using RAS standard.

CONDITIONS FOR USING PATTERNS IN MDD

Using patterns in MDD context also arises some questions: Can advantages that pattern
brings to development be identified and used in MDD realization? How to define patterns
adequate for using in MDD environment?

Closer look at patterns advantages and advantages which emphasise MDD paradigm
easily conclude that patterns can significantly improve realization of MDD paradigm. But
new question arises - How? Complementary relationship between patterns and MDD can be
seen in two forms:
- Software patterns provide content for MDD. Expertise captured in patterns represents

best practice for the problem solution with opportunity for reuse and that is the main
reason why patterns are desirable content for MDD.

- Model automation - as based idea, can be achieve with using patterns. Traditionally,
patterns are written down as documents, often with the aid of UML models to explain the
pattern and then applied manually. But if pattern is not define in the form of text which
programmer has to manually implement but is packed as reusable asset with encapsulated
implementation which also represent best practice, pattern can be automated from
conceptual level to programming code.

Results of using patterns in MDD can be visible in: reducing time to react, enabling on
demand design and development, reducing complexity and increasing productivity and quality
of software [9].

According to all this, idea in dissertation is defining conditions for using patterns in MDD
paradigm which has to be satisfied regardless to existing patterns or those which will has to be
developed in future.

MDD METHODOLOGIES ANALYSIS AND INTEGRATION FRAMEWORK
DEVELOPMENT

Despite its merits it is strange how (both) MDD realizations remains insufficient for
software development, in the sense that it does not provide a concrete and comprehensive
process for governing software development activities [6]. My aim is not to suggest that
industry has to have a new methodology for MDD but only to emphasize the fact that there is
still a lack of formal process for model driven development. Therefore it will be examine
suitability today's modern software development methodology for MDD development. After

 95

that, it will be defined framework for using patterns in MDD development. In order that
framework become methodologically acceptable and practical it is necessary that his design
includes all segments of pattern lifecycle. Pattern lifecycle will be developed on the base of
asset lifecycle, because one of the condition must be that pattern has to be defined as reusable
asset. Realizations of each identifying segments will be then methodologically described.
Examination of this dissertation will be finished with integration developed framework with
modern methodology which appears potentially adequate for MDD development.

CONCLUSION

The “modest” intent of MDD is to improve software quality, reduce complexity, and

improve reuse by enabling developers to work at reasonably higher levels of abstraction and
to ignore “unnecessary” details. In practice, however, MDD raises a number of significant
issues which are still open.

In this dissertation it will be examine only one aspect in MDD paradigm. Main thread is
investigating possibilities of using patterns in MDD paradigm context. Primarily focus is
govern to:

- Developing methodological framework which will help developer in using patterns in
MDD software development projects and

- Integrating developed framework with adequate modern methodologies

References

[1] *** IBM developerWorks: Pattern Solution,, 2007, http://www-

128.ibm.com/developerworks/rational/products/patternsolutions/
[2] ACKERMAN, L., GONZALEZ, C. The Value of Pattern Implementations. DrDobb's

Portal, http://www.ddj.com/cpp/199204017, 2007.
[3] APPLETON, B. Patterns and Sotfware: Essential Concepts and Terminology,

http://www.cmcrossroads.com/bradapp/docs/patterns-intro.html#PatternDefinition,
2000.

[4] BETTIN, J. Model-Driven Software Development, SoftMetaWare,
<http://www.softmetaware.com/whitepapers.html> (pristupano: 15.12.2007.) , 2004

[5] BROWN, A. W., IYENGAR, S., JOHNSTON, S. A Rational approach to model-driven
development, IBM System Yournal, Vol 45, No 3. 2006., p. 463-480.,
http://www.research.ibm.com/journal /sj/453/brown.html, (05.01.2007.)

[6] CHITFOROUSH, F., YAZDANDOOST, M., Ramsin, R. Methodology Support for the
Model Driven Architecture, Asia-Pacific Software Engineering Conference. APSEC
Volume, Issue, 4-7 Dec. 2007 Page(s): 454 – 461, 2007.

[7] ELSSAMADISY, A. Patterns of Agile Practice Adoption. InfoQ, 2006.
[8] FOWLER, M. UML As Programming Language.

http://martinfowler.com/bliki/UmlAsProgrammingLanguage.html, (25.02.2007.)
[9] GARDNER, T., YUSUF, L. Combine Patterns and Modeling to Implement

Architecture-Driven Development. 2006.
http://www.ibm.com/developerworks/ibm/library/ar-mdd2/

[10] GREENFIELD, J., SHORT, K., COOK, S., KENT, S. Software Factories - Assembling
Application with Patterns, Models, Frameworks and Tools. Wiley Publishing, 2004.

[11] GREENFIELD, J., SHORT, K. Moving to Software Factories,
http://blogs.msdn.com/askburton/archive/2004/09/20/232065.aspx, (25.05.2007.), 2004.

 96

[12] HAILPERN, B., TARR, P. Model-driven development: The good, the bad, and the ugly.
IBM System Yournal, Vol 45, No 3. 2006., p. 451-461.,
http://www.research.ibm.com/journal/ sj/453/hailpern.html, (05.01.2007.)

[13] LARSEN, G. Model-Driven Development: Assets and Reuse, IBM System journal Vol
45, No 3, 2006., http://www.research.ibm.com/journal/sj/453/larsen.html

[14] PIERSON, H. ARCast #5, 2007. http://channel9. msdn.com/
Showpost.aspx?postid=132943, (09.02.2007.)

[15] SWITHINBANK, P., CHESSELL, M., GARDNER, T., GRIFFIN, C., MAN, J.,
WYLIE, H., YUSUF, L. Patterns: Model-Driven Development Using IBM Rational
Software Architect. IBM Redbooks, 2005.

[16] YU, C. Model-Driven and Pattern-Based Development Using Rational Software
Architect, Part 1: Overview of the Model-Driven Development Paradigm With Patterns.
http://www-128.ibm.com/developerworks/rational/library/06/1121_yu/, 2007.

[17] YUSUF, L., CHESSEL, M., GARDNER,T. Implement model-driven development to
increase the business value of your IT system.

 http://www-128.ibm.com/developerworks/library/ar-mdd1/, (14.04.2006.)

