
 1

ELESTROSTATIC FIELD DISPERSION IN PLATE CONDENSOR 
CAUSED BY ELECTRODES DISPARITY  

 
 

ROZPTYL ELEKTROSTATICKÉHO POĽA V ROVINNOM 
KONDENZÁTORE SPÔSOBENÝ DISPARITOU ELEKTRÓD 

 
 

Ondrej BOŠÁK, Marián KUBLIHA, Jana JURDÍKOVÁ, Ján KALUŽNÝ,                    
Vladimír LABAŠ, Stanislav MINÁRIK  

 
 
 
 
 

Authors: Mgr. Ondrej Bošák, Doc. Ing. Marian Kubliha, PhD., Ing. Jana 
Jurdíková, Prof. RNDr. Ján Kalužný, PhD., Doc. RNDr. Vladimír 
Labaš, PhD., Doc. Ing. Stanislav Minárik, PhD. 

Workplace: Institute of Materiale, Faculty of Materials Science and 
Technology SUT 

Adress:  J. Bottu 25, 917 24 Trnava, Slovak Republic 
E-mail: ondrej.bosak@stuba.sk, marian.kubliha@stuba.sk, 

jan.kaluzny@stuba.sk, vladimir.labas@stuba.sk, 
stanislav.minarik@stuba.sk 

 
  

 
 

 
Abstract 

 
Special case of electrostatic field spatial distribution in homogeneous dielectric 

material inserted between electrodes of circular plate condensor with unequal 
diameter was calculated. We was especially interested in axially symmetric field 
dissipation in the area behind the edge of the circular electrode with smaller radius. 
Generally the typical case of Sturm-Liouville boundary value problem called Bessel`s 
differential equation arises in calculation of the scalar potential with axial symmetry. 
We found the particular solution of this equation which define the Bessel functions 
and expressed the potential of electrostatic fields in material. Consequently we 
considered a limit case of extremely slim condensor and investigated decrease of the 
field potential in the area behind the edge of smaller electrode by maens of 
asymptotic forms of Bessel functions. Uncertainty of capacity determination can be 
evaluated by means of obtained results. 

V príspevku sa venujeme problematike výpočtu priestorového rozloženia 
elektrostatického poľa v homogénnom dielektriku vloženom medzi elektródy 
rovinného kondenzátora tvaru kruhových dosiek s nerovnakým polomerom. 
Zaujímame sa predovšetkým o osovo symetrický prípad rozptylu elektrostatického 
poľa v oblasti za hranou elektródy s menším polomerom. Výpočet skalárneho 
potenciálu v prípade osovo symetrických elektród vo všeobecnosti vyúsťuje do 
problému riešenia  Besselovej diferenciálnej rovnice. Našli sme partikulárne riešenie 
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tejto rovnice v tvare Besselových funkcií a vyjadrili potenciál elektrostatického poľa 
v dielektriku. Uvážili sme limitný prípad extrémne tenkého kondenzátora a vyšetrovali 
pokles potenciálu poľa v oblasti za hranou menšej elektródy pomocou 
asymptotických Besselových funkcií. Na základe uvedených výsledkov bol 
uskutočnený odhad neurčitosti v stanovení kapacity.  
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INTRODUCTION 
 

In presented paper we deal with calculation of electrostatic field in dielectric 
medium inserted between two circular shaped electrodes with different diameters. 
We consider a cylindric sample made of investigated dielectric material with radius R1 
and very thin heigth h ( h << R2) inserted between two parallel coaxial metal plates 
with radius R1 a R2 ( 12 RR < ). Metal plates are connected to voltage U and charged 
consequently (scheme is shown in fig.1). A same quantum of charges Q with 
opposed signs are accumulated on 
the metal plates. Metal plate with 
radius R1 is charged on potential ϕ1 
and metal plate with radius R2 is 
charged on potential ϕ2. We are 
interested in electrostatic field 
potential ϕ dependence on distance r 
from the axis of both plates measured 
on the sample surface mainly in area 
R r R2 1≤ ≤  (for hz =  according fig.1). 
Dispersion of the fieldcan be 
observed in mentioned area. In next 
paper we investigate the electrostatic 
field in this area.  
 

ELESTROTATIC FIELD IN CONDENSOR DIELECTRIC 
 

It is possible to consider Laplace equation [1, 2] for charges free electrostatic field 
at investigation of potential spatial changes in dielectric media. Mentioned equation 
can be written as: 

 
∆ϕ = 0 ,                                                                                                              (1) 

 
If we assume axial symmetry of homogeneous dielectric media (see fig.1) it is 
advantageous to transform mentioned equation (1) to cylindrical coordinates: 
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r r r r z
+ + + =                                                                                   (2) 

and consider the fact: 
∂ ϕ
∂ θ

2

2 0= .                                                                                                             (3) 

Consequently the scalar potential in medium ( )zr ;ϕ  can be find as a solution of 
following equation: 

∂ ϕ
∂

∂ ϕ
∂

∂ ϕ
∂

2

2

2

2
1 0

r r r z
+ + = .                                                                                              (4) 

If we expect a separable solution: 
( ) ( ) ( )ϕ r z r Y z; = Φ ,                                                                                                    (5) 

it results from equation (4) that solution components ( )rΦ  and ( )zY must obey 
equations: 

( ) ( ) ( )∂
∂

∂
∂

λ
2

2
1Φ Φ

Φ
r

r r
r

r
r+ = ,                                                                                         (6) 

( ) ( )∂
∂

λ
2

2

Y z
z

Y z= − ,                                                                                                     (7) 

where λ is constant that can be positive, negative or it can be equal zero. In following 
text we investigate mentioned events. 
 
a) In case if λ = 0 it is possible the solution of equation (6) to find by substitution: 

( ) ( )
f r

r
r

=
∂

∂
Φ .                                                                                                            (8) 

It is easy to show that: 

( ) ( )f r e e A
r

C r= =− −0 0ln                                                                                                  (9) 

and: 
( )Φ0 0 0r A r B= +ln .                                                                                                  (10) 

Integration constants A0 a B0 depend on boundary conditions. Function ( )zY  in case 
if λ = 0 can be determined very easy from equation (7): 

( )Y z C z D0 0 0= + ,                                                                                                     (11) 
where C0 and D0  are integration constants. Consequantly in mention case ( λ = 0 ) the 
particular solution of differential equation (4) can be written in following form:  

( )ϕ 0 0 0 0 0r z K z r L r M z N; ln ln= + + + .                                                                          (12) 
Integration constants K0, L0, M0 a N0 must be determined by means of boundary 
conditions.  
 
b)  In case if λ > 0  we can write: 

λ = k 2 .                                                                                                                  (13) 
Solution of equation (7) can be find in form: 

( ) ( )Y z Y kzp = +1 sin α ,                                                                                                (14) 
in that case. Equation (6) can be transformed to special case of modified Bessel`s 
differential equation: 

x
x

x
x

x2
2

2
2 0∂

∂
∂
∂

Φ Φ
Φ+ − =                                                                                           (15) 

by means of substitution:  
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x k r= .                                                                                                                  (16) 
Solution of (6) can be determined as follows:  

( ) ( ) ( )Φp r A I k r B K k r= +2 0 2 0 .                                                                                     (17) 
in that case, where I0 and K0 are modified Bessel`s functions [3, 4] of zero order: 

( )
( )

I k r
m

k r

m

m

0 2

0

21
2

= ⎛
⎝⎜

⎞
⎠⎟

=

∞

∑ !
                                                                                       (18) 

( ) ( ) ( ) ( ) ( )K k r I k r k r I k r I k r I k r0 0 2 4 62
2
1

2
2

2
3

= − + ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

+ + + +η ln ...        .                                 (19) 

Particular solution of equation (4) is: 
( ) ( ) ( )[ ] ( )ϕ αp Y A I k r B K k r kz1 0

2 0 2 0= + +sin                                                                       (20) 
and general solution can be find as:  

( ) ( ) ( ) ( )[ ] ( )ϕ α1 0
2 0 2 0 0 0 0 0r z Y A I k r B K k r k z K z r L r M z N; sin ln ln= + + + + + +                          (21) 

in case of the λ > 0 consequently. 
 
c)  In case of λ < 0  we can write: 

λ = −k 2 .                                                                                                                (22) 
and solution of equation (7) is:   

( )Y x A e B ek z k z= + −
3 3 ,                                                                                             (23) 

where A3 a B3 are integration constants. 
Equation (6) can be transformed as follows: 

x
x

x
x

x2
2

2
2 0∂

∂
∂
∂

Φ Φ
Φ+ + =                                                                                          (24) 

by means of substitution (16) in mentioned case. Equation (24) is special case of 
Bessel`s differential equation [4, 5] and solution of (6) can be written in form: 

( ) ( ) ( ) ( )Φp x K J x M Y x2
2 0 2 0= + ,                                                                                     (25) 

where: 

( ) ( )
( )

J x
m

x
m

m

m

0 2

0

21
2

=
− ⎛

⎝⎜
⎞
⎠⎟

=

∞

∑ !
                                                                                         (26) 

( ) ( ) ( ) ( ) ( )Y x J x C x J x J x J x0 0 2 4 6
2

2
2
1

2
2

2
3

= + ⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎩

⎫
⎬
⎭

+ − + +
⎡

⎣
⎢

⎤

⎦
⎥π

ln ...                                             (28) 

are Bessel`s fonctions of zero order. 
General solution of equation (6) is: 

( ) ( ) ( ) ( )[ ]( )ϕ 2
2 0 2 0 3 3 0 0 0 0r z K J k r M Y k r A e B e K z r L r M z Nk z k z; ln ln= + + + + + +−                    (29) 

in case of λ < 0 . 
 

APPLICATION OF BOUNDARY CONDITIONS 
 
1. Spatial changes of scalar potential is determined by function ( ) ( )ϕ I r z. ; in area 
0 2≤ ≤r R  , z h≤ ≤0  (area I). Function ( ) ( )ϕ I r z. ;  must obey following conditions: 

( ) ( )ϕ ϕI r. ;0 1= , ( ) ( )ϕ ϕI r h. ; = 2                                                                                      (30) 
after the charging of condensor.  
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The solution (21) can be in accordance with boundary conditions (30). Spatial change 
of electrostatic potential in investigated area is possible to write in the form (21) and 
the solution following conditions must satisfy:  

( )sin k h + =α 0 , ( ) 00 =+ αksin .                                                                                 (31) 
It follows from (31): 

k h n+ =α π , k h n+ =α π                                                                                         (32) 
where n a m are integral numbers (0, 1± , 2± , 3± ,...). Taking into account the fact that 
there are no reason that any part of solution is periodical it is possible to appoint m = 
0 and n = 1 and: 

α = 0 , k
h

=
π .                                                                                                        (33) 

In addition the boundary conditions (30) can be satisfied only in case: 
00 =K , 00 =L .                                                                                                     (34) 

For that reason the solution must be written in following form in mentioned area: 
( ) ( ) 000202

0 NzMz
h

r
h

KBr
h

IAYzrI ++⎟
⎠
⎞

⎜
⎝
⎛

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛=

πππϕ sin;. .                                           (35) 

After substituting (35) to (30) we can determine integration constants: 
N0 1= ϕ ,M

h
U
h0

2 1=
−

=
ϕ ϕ .                                                                                       (36) 

and spatial changes of scalar electrostatic potential write as follows: 
( ) ( )ϕ π π π ϕI r z Y A I

h
r B K

h
r

h
z U

h
z. ; sin= ⎛

⎝⎜
⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

+ +0
2 0 2 0 1.                                               (37) 

 
2. Spatial changes of scalar potential is determined by function ( ) ( )zrII ;.ϕ  in area 
R r R2 1≤ ≤ , z h≤ ≤0  (area II). Function ( ) ( )zrII ;.ϕ  must obey following conditions: 

( ) ( )ϕ ϕII r. ,0 1= , ( ) ( ) ( ) ( )ϕ ϕII IR z R z. .; ;2 2=                                                                           (38) 
The boundary conditions can valid in mentioned form in case if:  

L0 0= , N0 1= ϕ .                                                                                                      (39) 
If we consider following substitution:  

M K r0 0 0= − ln ,                                                                                                        (40) 
where r0 is constant, the spatial changes of scalar potential can be written: 

( ) ( )ϕ π π π ϕII r z Y A I
h

r B K
h

r
h

z K z r
r

. ; sin ln= ⎛
⎝⎜

⎞
⎠⎟

+ ⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

⎛
⎝⎜

⎞
⎠⎟

+
⎛

⎝
⎜

⎞

⎠
⎟ +0

2 0 2 0 0
0

1.                                     (41) 

We assume that: 
hr >>                                                                                                                   (42) 

in considered area, then: 
1>>

h
rπ                                                                                                                  (43) 

and Bessel`s functions arguments are very large. It holds follows for very large 
values of arguments x: 

( )I x
x

e x
0

1
2

→
π

 , ( )K x
x

e x
0 2

→ −π  .                                                                       (44) 

In addition the function ( ) ( )zrII ;.ϕ  must be decreasing and A2 0=  for that reason. 
Consequently the spatial changes of scalar potential in dielectric media inserted 
between electrodes is determined by following functions: 
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( ) ( )ϕ π ϕ
π

I
r

hr z A h
r

e
h

z U
h

z. ; sin= ⎛
⎝⎜

⎞
⎠⎟

+ +
2 1         in the area 0 2≤ ≤r R  , z h≤ ≤0               (45) 

( ) ( ) 1
0

02
ϕπϕ

π

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛=

−

r
rzKz

h
e

r
hAzr h

r
II lnsin;. ,       in the area R r R2 1≤ ≤ , z h≤ ≤0   (46) 

where A is constant. Charge surface density is the same in the both of electrodes 
and it is determined as follows: 

( ) ( ) ( )0;.. rE I
z

I εσ =      for r R≤ 2 ,                                                                                (47) 
( ) ( ) ( )0;.. rE II

z
II εσ =     for R r R2 1≤ ≤ ,                                                                         (48) 

where ε is dielectric constant of material inserted between electrodes and ( ).I
zE , ( ).II

zE  
are components of electrostatic intensity vector oriented to direction of z coordinate 
in areas I and II respectively. We consider: 

( ) ( )r
E I I. .= −∇ϕ  ,                                                                                                        (49) 

( ) ( ).. IIIIE ϕ−∇=
r

                                                                                                        (50) 
and determine mentioned components: 

( )
( )

h
Uz

h
e

hr
hA

z
E

r
h

I
I

z −⎟
⎠
⎞

⎜
⎝
⎛−

∂
∂

−=
− ππϕ π

cos
.

.

2
                     

(51) 
( )

( )

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛−

∂
∂

−=
−

0
02 r

rKz
h

e
hr

hA
z

E
r

h
II

II
z lncos

.
. ππϕ π

                     

(52) 
After substituing (45) and (46) to second equation (38) we obtain: 

K U

h R
r

0
2

0

=
⎛
⎝
⎜

⎞
⎠
⎟ln

.                                                                                                       (53) 

Constant r0 we can find by account that the amount of charge accumulated on both 
charged electrodes is same. It must be hold following: 

( )

( ) ( ) ( ) ( ) ( ) ( ) rdrπrσεrdrπrσεrdrπrσεSdσεQ

R

R

II

R

I

R

I

S

222
1

2

22

.

0

.

0

. ∫∫∫∫ +=== .                     (54) 

If we consider equation (54) we obtain: 

( ) ( ) 02
1

2

. =∫ rdrπrσ

R

R

II                                                                                                (55) 

and after substituing (48) and (52) to (55) we can write: 

02
2

2

1

2

1
0

0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− ∫∫

−

rd
r
rKrd

r
eh

h
A

R

R

R

R

r
h

lnπ
π

π

.                                                                      (56) 

 
Concerning (43) the first integral in (56) can be neglected: 

0
2

2

1

→∫
−

rd
r

eh
h

A
R

R

r
h
π

π                                                                                               (57) 

and equation (56) gets the form: 
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2 00
0

1

2

π K r
r

d r

R

R

ln
⎛

⎝
⎜

⎞

⎠
⎟ =∫ .                                                                                             (58)  

After integrating (58) we can determine r0 as:  

r R
e

R
R

R

R R

0
2 2

1

1
2

2
2

1
2

=
⎛

⎝
⎜

⎞

⎠
⎟

−
.                                                                                                  (59) 

and K0 by substituting (59) to (53) consequently: 
K U

h R
R R

R
R

0
1
2

2
2

1
2

1

2

1
2

=

−
⎛

⎝
⎜

⎞

⎠
⎟ +

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
ln

                                                                                    (60) 

We can find the spatial change of scalar potential in the area II. on the surface of 
dielectric media (z = h) by substituing (59) and (60) to equation (46). Mentioned 
potential can be evaluated under considered conditions (43) and (57) as follows: 

( ) U
R
rkhrUv

⎭
⎬
⎫

⎩
⎨
⎧

−=
2

ln1;                                                                                           (61) 

where constant k is determined by: 
k

R
R R

R
R

=

−
⎛

⎝
⎜

⎞

⎠
⎟ +

1
1
2

1
2

1
2

2
2

1

2

ln
                                                                                           (62) 

 
PROBLEM OF UNCERTAINTY EVALUATION 

 
In real cases the uncertainty of voltage applied on electrodes determination can be 
evaluated by: 

( )hRUUUUU vv ;1min −=−≈δ .                                                                                 (63) 
As it can be concluded on the basis of result (61): 

2

1ln
R
R

k
U
U

≈
δ .                                                                                                         (64)                      

In case if the electrodes disparity mentioned above is considered as a uncertainty in 
the electrodes diameter determination δR we can expect: 

RR ≈2 , RRR δ≈− 21 ,                                                                                           (65) 
Capacity of condensor is defined: 

U
QC =                                                                                                                   (66) 

and its uncertainty can be determided as follows: 
Uδ

U
QUδ

U
C

Cδ
2

−=
∂
∂

= .                                                                                        (67) 

consequently. As it can be easy seen from (67): 

U
Uδ

C
U
Uδ

U
QCδ == i.e.

U
Uδ

C
Cδ

= .                                                                       (68) 

If the (64), (62) and (68) are considered following relation can be written for the 
condensor capacity uncertainty evaluation: 

⎟
⎠

⎞
⎜
⎝

⎛ ++⎟
⎠

⎞
⎜
⎝

⎛ +⎟
⎠

⎞
⎜
⎝

⎛ +

⎟
⎠

⎞
⎜
⎝

⎛ +⎟
⎠

⎞
⎜
⎝

⎛ +
≈

21ln12

1ln22

2

R
R

R
R

R
R

R
R

R
R

R
R

R
R

C
C

δδδδ

δδδ
δ   .                                                            (70) 
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Correlation between uncertainties of determination of both capacity and condensor 
electrode radius is described by (70). Mentioned correlation was evaluated on the 
basis of scalar field dispersion phenomena analysis on the condensor electrode 
edges in the case if inaccuracy of determination of condensor dimensions is allowed. 
Uncertainty of capacity can be evaluated if the uncertainty of electrodes diameter is 
identified. Difference between the investigated uncertanties can be evaluated as 
follows: 

C
C

R
R δδ

−=∆                                                                                                         (71) 

                                Tab.1 
 
 
δR/R [%] 
 

 
δC/C [%] 

0,1 0,099900 
1 0,990091 
2 1,960721 
3 2,912412 
4 3,845671 
5 4,760983 
6 5,658823 
7 6,539645 
8 7,403892 
9 8,251992 
10 9,084357 

  
 
The results are shown in tab.1 and fig.2 respectively for the values δR/R from 0,1 % 
up to 10 %. That is clear the values of uncertainty of condensor radius determination 
is bigger in all cases then the maximal value of uncertainty of capacity caused by the 
field dispersion relating to the electrodes disparity.  
 

CONCLUSION 
 

A lot of experimental methods are based on observation of interaction of material 
structure with time variable electromagnetic field. Impedance spectroscopy belongs 
to mentioned methods. 

Impedance spectroscopy is a powerful sensing tool for non-invasive observation of 
material structure.The impedance spectroscopy technique consists in the 
measurement of the sample electrical impedance as a function of frequency of the 
input signal over a wide frequency range. The method of impedance spectroscopy is 
widely used to measure electrical or dielectrical properties of materials. The usage of 
the mentioned method is succeful if any changes of the physical or chemical 
properties of material lead to changes of the electrical properties. The general 
approach of the method is to apply the harmonic shaped voltage as an electrical 
stimulus impulse to the material and observe the resulting current response. The 
voltage is applied over a wide frequency range. To discuss the electrical properties of 
sample and correlated properties as well it has to be construct a physical model of 

Fig.2 Difference between electrode radius and 
capacity uncertainies vs. the radius uncertainty
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the system sample-electrodes. The results presented above can be considered in 
case if electrodes disparity occurs and field disspersion is expected. 
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