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The type I twinning is observed in {121} plane in the martensite with 2H structure. This 
type of martensite arises often in the Cu-based shape memory alloys. The structures of 
stacking faults and twin boundaries on {121} plane in 2H structure are modelled by using of 
many-body potentials of Finnis-Sinclair type. Two types of stacking faults and three types of 
twin boundaries were found as result of calculation.  

 
INTRODUCTION  

 
Shape memory alloys are intensively studied during last years. These materials exhibit a 

variety of deformation processes derived from martensitic phase transformation. Twinning in 
shape memory alloys is interesting and important field for investigation. The twinning in the 
2H martensite is considered in this paper. The 2H martensite is observed in Cu-based alloys 
such as Cu-Al-Ni, Cu-Al-Zn, Cu-Al-Mn. The B19 phase in Ni-Ti possesses the 2H structure 
as well. The 2H structure possesses orthorhombic lattice, which can be recognized as close 
packed hexagonal if ordering is disregarded in binary or ternary systems. 

Three types of twins are observed in systems with the 2H structure. For instance, there 
are compound twins on a {101}γ1

’ plane, type-I twins on a {121}γ1
’ plane and type-II twins 

on an irrational plane near {231}γ1
’ [1-3] in Cu-Al-Ni. It was found that the large difference 

exists between the critical resolved shear stresses for type-II (7MPa) and compound twinning 
(0.7MPa) in 2H martensite of Cu-Al-Ni alloy [4]. The similar trend (i.e higher resolved shear 
stress for type-II twinning than for compound twinning) was found in Cu-Al-Mn alloy but 
difference is smaller in this material [5]. Critical resolved shear stress for type II twinning is 
15 MPa and for compound twinning 10 MPa in the last case.  

The {121} plane in 2H structure is a plane of type I twinning and it corresponds to the 
pyramidal {1011} twinning in the hcp lattice if ordering in binary or ternary systems is 
disregarded. The {1011} twin boundaries are formed for instance in the process of bcc-hcp 
transitions in Ti and Ti-Al alloys [6]. The {121} twinning is observed in the 2H martensite of 
copper-based alloys such as Cu-Al-Ni [7] and Cu-Al-Zn [8]. It was found by HREM 
observation that a stable configuration of the {121} orthorhombic boundary is defined by a 
single plane of atoms, formed by coalescence of two adjacent to boundary planes of atoms 
[8].  

In order to understand difference in the behaviour of twinning modes it is necessary to 
know structures of twin boundaries. The knowledge about stacking faults structure in the 
twinning plane can be useful for understanding of twin nucleation and growth processes. The 
modelling of simple interfaces in the {121} plane in 2H structure is performed in present 
work. The structures of twin boundaries and stacking faults are considered. Finnis-Sinclair 
type many-body potential, which was proposed originally by Rosato [9] for fcc transition 
metals, was selected for calculations in this work. This potential was chosen mainly for its 
relative simplicity - it contains only five parameters. The aim of this paper is not to describe 
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interfaces in specific materials but to calculate their structure by using of several potentials in 
order to find trends how interface structure depends on interatomic potentials. 

 
MODEL 

 
 The many-body potential (1) was taken in a simple analytical form with only five 
parameters A,ξ,p,q,r0 proposed in [9] 
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In order to obtain reasonable scaling of energy and distances the coefficients A and ξ 

were fitted to the cohesive energy and lattice parameter of silver. The parameters p and q were 
changed freely to alter the properties. The parameter r0 was taken equal to the first neighbors 
separation: 0 0 / 2r a= . Each part Er

i and Eb
i were cut on the distance corresponding to the 3rd 

neighbours of fcc lattice. Between the distances of the 3rd neighbours (r3) and 4th neighbours 
(rc) the expressions for Er

i and Eb
i were replaced by a fifth order polynomials 

 
3,i 5 4 3

b c c cE (r)= α(r - r ) + β(r - r ) + γ(r - r ) r r>                                (2) 

3,b 5 4 3
i 1 c 1 c 1 cE (r)= α (r - r ) + β (r - r ) + γ (r - r ) r r>                               (3) 

 
Three potentials, which manifest qualitatively different behaviour, were chosen for 

further investigation. The parameters of these potentials are p=9 and q=1, 1.5 and 2. We will 
designate these potentials as p9q1, p9q1.5 and p9q2 respectively. The stability of such 
potentials was analysed also in [10]. The most stable structures are bcc and hcp with non-ideal 
c/a for p9q1 and p9q1.5 potentials, respectively, and fcc is the most stable structure for p9q2 
potentials. The parameters of used potentials are listed in Table 1. 

The blocks of ~ 30000 atoms were used for calculation of energies and structures of 
interfaces. Three type of calculations were performed by means of LAMMPS program [11, 
12], i.e. the calculation of unrelaxed structure energy, calculation with atomic position 
relaxations in the direction perpendicular to the interface and energy relaxations with 
movement of atoms allowed in all directions. 
 
STACKING FAULTS  
 

The generalized stacking faults represent theoretical constructs where one part of the 
crystal is displaced with respect to the other part on certain crystallographic plane. The energy 
dependence of such fault on the displacement vector is called γ-surface. The concept of γ-
surface was introduced in works by Vitek [13, 14]. 

Since two types of {121} interplanar distances occur two types of γ-surfaces are 
considered.  We call the first one as narrow-type i.e. the crystal is cut between the close 
planes, and the second type we call as wide-type, i.e. the crystal is cut between the planes with 
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larger interplanar distance. It is necessary to note that two {121} planes with smaller 
interplanar distance are considered in the literature as one corrugated plane [8]. Let us mark 
two alternate {121} planes with the small interplanar distance as α and β, respectively. The 
planes α and β form a corrugated {121} plane together (see Fig. 5). A pair of planes with the 
smaller interplanar distance is meant as one {121} plane in the text below.  

 
Table 1 Parameters of many-body potentials. r0=2.892066736 for all potentials. The intervals where potentials 
is replaced by polynomial between third neighbours distance r3=5.0092065 and cut-off radius rc=5.7841334 are 
same for all potentials too. A, ξ are potentials parameters and α, β, γ, α1, β1, γ1 are parameters of polynomials 
(2) and (3). The parameters units are selected in a way to obtain energy in eV and distances in Å. 

 p9q1 p9q1.5 p9q2 

A 0.038952362 0.05774643615 0.0774808638 

ξ 0.762446703 0.90205767 1.0250236 

α -2.1823642 -1.2668815 -0.67556849 

β -4.3010659 -2.51468371 -1.3475536 

γ -2.3114016 -1.3824144 -0.75934542 

α1 -3.2094594ּ10-4 -4.7579872ּ10-4 -6.3839949ּ10-4

β1 -5.8489251ּ10-4 -8.6709653ּ10-4 -1.1634205ּ10-3

γ1 -3.7570877ּ10-4 -5.5698400ּ10-4 -7.4732927ּ10-4

 
Table 2 Locations and energies of (121) stacking faults 

 
 A E(A), eV/Å 2 B E(B), eV/ Å 2

p9q1 0.069[238]  0.025 0.189[238]  0.015 
p9q1.5 0.068[238]  0.023 0.191[238]  0.017 
p9q2 0.060[238]  0.020 0.193[238]  0.016 

 
The block with periodical conditions in the [210]  and [238]  directions was considered. 

These directions lie in the (121) orthorhombic plane and they are perpendicular two each 
other. No minimum corresponding to a stacking fault is found in the “narrow type” γ-surfaces. 
But two types of “wide-type” stacking faults were found. The topology of γ-surfaces is similar 
for all potentials. The γ-surface for p9q1.5 potential is shown in Fig. 1 as an example. Two 
types of stacking faults are marked as A and B. The cross-sections of γ-surfaces at 0 and 
1/8[210]  are the same but the last one is shifted by 1/8[238] . The locations of stacking faults 
are different for different potentials. These locations are listed in Table 2 as well as stacking 
fault energies. [238] cross-sections of (121) γ-surfaces are shown in Fig. 2 for p9q1, p9q1.5 
and p9q2 potentials. Letters A and B mark stable stacking faults.  

Fig. 3 and 4 represent type A and B stacking faults for p9q2 potential respectively. 
Relaxations were performed in the direction perpendicular to the (121) plane. The 
corrugations becomes smaller for the closest to the fault (121) planes for both types of faults. 
The fault A can be approximately interpreted as a fault with extra (121) plane i.e. the extrinsic 
fault (Fig.3). In a similar way the fault B can be considered as a fault with the missing (121) 
plane i.e. the intrinsic fault (Fig. 4).   
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Fig. 2 [238] cross-sections of (121) γ-surfaces 
for p9q1, p9q1.5 and p9q2 potentials. Stable 
stacking faults are marked by letters A and B. The 
third minimum between A and B correspond to 
inflexion point. 

Fig. 1 (121) 2H γ-surface for p9q1.5 potential. Stable 
stacking faults are marked by letters A and B. Hachures 
are shown in the downhill direction. 
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{121} TWIN BOUNDARIES 

 
If we consider a sequence of corrugated planes αβ we can construct three types of twin 

boundaries with mirror symmetry. Let us denote them as Twin I, Twin II and Twin III as 
follows: 

direction perpendicular to (121)
Fig. 3 Type A (121) stacking fault for p9q2 potential.
Projection in the [  direction. Black and white
circles represent atoms in two alternate planes paralle

210]
l

to the projection plane. 

Fig. 4 Type B (121) stacking fault for p9q2 potential. 
The same notation as in Fig. 3. 

 

 
Twin I – αβ α βα 
Twin II – αβ αβα βα  
Twin III – αβ βα 
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Fig. 5 Fully relaxed structure of Twin I. The same 
notation as in Fig. 3. 

Twin III
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(121)
Fig. 7 Fully relaxed structure of Twin III. The 

same notation as in Fig. 3. 

Fig. 6 Fully relaxed structure of Twin II. The same notation 
as in Fig. 3. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
The results of twin boundaries calculation are listed in Table 3. Twin I possesses the smallest 
energy among unrelaxed structures but after full relaxations Twin III becomes the structure 
with the lowest energy. The energy of fully relaxed Twin III structure is about ten times 
smaller than the energy of Twin I and Twin II structures. The fully relaxed interfaces are 
shown in Fig. 5-7. The high energy Twin I and Twin II structures were described in [15, 16] 
as interfaces with row of vacancies in the interface or in the planes neighbour to the interface. 
Vacancies correspond to the missed α or β subplane of the corrugated αβ plane. The 
configuration with uncorrugated central plane was observed experimentally [8] in Cu-Al-Zn 
alloy. This structure corresponds to the Twin III (Fig. 7).   
 
 
 
 
 
 
 

    186



Table 3 Energies of unrelaxed and relaxed {121} twin boundaries for p9q1, p9q1.5 and p9q2 potentials.  
            All  values are in eV/Å2

  p9q1 p9q1.5 p9q2 
unrelaxed 0.07823704 0.04539011 0.06129964 

perp. relaxed 0.05534577 0.04205263 0.04699780 
Twin I 

 
 

full relaxed 0.03313514 0.03100743 0.02766049 
unrelaxed 4.35527692 6.480861 8.555070685 

perp. relaxed 0.07705652 0.06066846 0.06476329 
Twin II 

 
 

full relaxed --bcc-- 0.04213903 0.030056409 
unrelaxed 0.09405239 0.06866504 0.09739156 

perp. relaxed 0.0610626 0.04479348 0.04877207 
Twin III 

 

full relaxed 0.00543276 0.00479014 0.00373147 

 
DISCUSSION 
 

The 2H structure is orthorhombic but it can be recognized as hexagonal if ordering is 
disregarded in binary and ternary alloys. The results of our calculation are similar to those 
obtained by Bacon and Liang [17] for the hcp structure and a set of pair-wise potentials. They 
found that two faults exist on the {1011} hcp planes but their positions are potential dependent.  

Similar structures for the {1011} boundary in the hcp structure were obtained in the 
calculations by Serra et al. [16]. It was found that low energy boundary has uncorrugated 
central plane. Two other stable configurations of {1011} boundary were found in these 
calculations, too. They have higher energy than the structure with coalesced planes. These 
structures are characterized by rows of vacancies either in the interface, or in a plane adjacent 
to interface.  

Thus it is possible to conclude that structure of low energy type I twin boundary is 
independent on used interatomic potential. The existence of stacking fault in {121} 
orthorhombic plane is independent on potential as well. But positions of such stacking faults 
are potential dependent.  

The tendency to form uncorrugated planes near the boundary by coalescence of two 
planes (α and β in Fig. 5) with small interplanar distance is interesting feature. The existence 
of this tendency allows us to do an assumption about structure of type-II twin boundaries in 
Cu-Al-Ni 2H martensite. It is known that type-II twins are observed very often in this 
material. On the other hand as far as we know there are no works which study structure of 
these boundaries on atomic level. The type-II twin boundaries in the Cu-Al-Ni are observed in 
irrational plane close to {231}. We can assume that, from physical point of view, irrational 
boundary is closely approximated by twin in {231} rational plane. Type-II twinning 
operations are rotation by π around shear direction η1 or reflection in the plane perpendicular 
to η1 [18].  But these twinning operations are not operations of symmetry for {231} plane in 
2H structure and thus {231} planes do not coincide in two crystals with twin orientation. The 
central plane of twin boundaries belong to both twin crystals as a rule. This fact allows to 
form twin boundary with extremely low energy. Since {231} planes in both twin crystals do 
not coincide, the formation of low energy twin boundary is possible only if we suppose that 
central plane in {231} type-II twin consist of two coalesced planes in the similar way as it 
happens in {121} type-I twin. Such central plane is invariant in respect to twinning operations 
and can be built into structures of both twin crystals. 
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CONCLUSIONS 
 
 Structure of low energy {121} type-I twin boundary is independent on used interatomic 
potential. The low energy structure of {121} twin boundary possesses uncorrugated central 
plane. The existence of stacking fault in {121} orthorhombic plane is independent on 
potential as well. But positions of such stacking faults are potential dependent. 
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