REENGINNERING TUBE PRODUCTION TWO-DRAW SINGLE-RUN TECHNOLOGY

Martin RIDZOŇ, Andrej MALÍK, Ľubica ELEKOVÁ, Jozef BÍLIK

Authors: Martin Ridzon̆, MSc., Andrej Malík, MSc., Lubica Eleková, MSc., Jozef Bilik, Assoc. Prof. PhD.
Workplace: Department of Forming and Department of Machining and Assembly, Institute of Production Technologies, Faculty of Materials Science and Technology in Trnava, Slovak University of Technology
Address: J. Bottu 23, 91724 Trnava, Slovak Republic
Phone: $\quad+421907603807$
Email: martin.ridzon@stuba.sk, andrej.malik@stuba.sk, lubica.elekova@stuba.sk, jozef.bilik@stuba.sk

Abstract

This paper discuss about enhancing the efficiency of manufacturing the accurate steel seamless pipes pulled cold drawn two-draw single-run technology. The aim of this experiment is to verify the option of pulling rolled pipe (material E355) size $\varnothing 70 \times 6,3 \mathrm{~mm}$ without intermediate recrystallising annealing has final size $\varnothing 50 \times 3,75 \mathrm{~mm}$ looking at its mechanical features which determination is based on basic pulling test and from the point of view of roughness of inner surface of pipes.

Key words

two-draw single-run technology, mandrel drawing of tubes, reduction, material E355, roughness of surface

Introduction

It's called drawing tubes, cold-forming means, during which the original material (pipe) forms in beams, its cross-section shrinks, thins up or the thickness of wall of pipe enlarge and length increases. The process of forming happens in several moves, depending on the original and final size of pipe. The important task is the choice of proportional reduction for the particular cross-sections because the unbalanced decomposition of reduction results into tension and deformation or cracks during the pulling, that will consequently influence the roughness of pipes' surfaces.

Experiments

The material used for this experiment was non-alloy structural steel cllass E 355 (see table 1). This material was used to manufacture pipes size $\varnothing 70 \times 6,3 \mathrm{~mm}$. by process of hot rolled.

CHEMICAL COMPOSITION OF EXPERIMENTAL MATERIAL E355
Table 1

C	0,1800	Mn	1,1800	Si	0,2300	P	0,0150	S	0,0140	Cr	0,0500
Ni	0,0800	Mo	0,0200	Ti	0,0020	V	0,0030	Nb	0,0010	N	0,0090
Al	0,0230	Zr	0,0020	Ca	0,0022	As	0,0060	W	0,0100	Zn	0,0040
Cu	0,2000	Sn	0,0160	Pb	0,0010	O	0,0032	Sb	0,0040	Ce	0,0010

The experiment was conducted on pipes at rolled by rolling temperature $-830{ }^{\circ} \mathrm{C}$ according to the following procedure: Deburring - chemical treatment - drawing tube at a fixed mandrel roller - other operations. Technological parameters of the pipe pulling - size C $70 \times 6.3 \mathrm{~mm}$ to size C $50 \times 3.75 \mathrm{~mm}$ are listed in Table 2. Detailed view of the internal pipe surface is shown in Fig.1.

TECHNOLOGICAL PARAMETERS OF THE PIPE PULLING (two-draw single-run technology)

O.D. - Outer pipe diameter [mm], W.T. - The wall thickness of pipe [mm], L tip - tip length [mm], r - reduction, Length - The length of pipe, I.D. 1 -Internal diameter before pulling, I.D. 2 - Internal diameter after pulling

Fig. 1. Detail of the inner surface of the pipe grade OR-3 a) Ø55x4,75, 1-pull, b) Ø50x3,75, 2-pull

Experiment Evaluation

The sequence of sampling for mechanical testing of pipes:

1. After the first pull - from size $\varnothing 70 \times 6,3 \mathrm{~mm}$ to size $\varnothing 55 \times 4,75 \mathrm{~mm}$
2. After the second pull-from size $\varnothing 55 \times 4,75 \mathrm{~mm}$ to size $\varnothing 50 \times 3,75 \mathrm{~mm}$.

Measured values of mechanical properties of pipes after individual pulls are shown on Graph 1 and values of the internal pipe surface roughness after individual pulls are shown on Graph 2. Graph 2 shows the mean values of measured surface roughness. Surface roughness measurements were performed on the instrument Taylor Hobson Surtronic $3+$.

0 - rolled tube (intermediate input), $11 s$ - first draft, $12 s$-second draft
Graph 1. The resulting measured mechanical values of pipes

Graph 2. The resulting roughness values of pipes Ra [$\mu \mathrm{m}]$

The required mechanical properties according to EN 10305-1 and thus shaped and heattreated steel E355 + C (C + acronym means - no heat treatment after the last cold forming) are: $\mathrm{Rm} \min 640 \mathrm{MPa}$, A5 min 4%, and the resulting roughness $\mathrm{Ra} 4 \mu \mathrm{~m}$. Roughness measurement was carried out in accordance with EN ISO 4287.

Conclusion

A comparison of mechanical values imposed by standard EN 10305-1, where $\mathrm{Rm}=640 \mathrm{MPa} \min$ and $\mathrm{A} 5=\min 4 \%$, and the resulting roughness Ra of $4 \mu \mathrm{~m}$ measured mechanical values obtained by static tensile test where $\mathrm{Rm}=893 \mathrm{MPa}, \mathrm{A} 5=9,9 \%$ and measurement of internal surface roughness $\mathrm{Ra} 0,603 \mu \mathrm{~m}$ tubes shows that the material meets the requirements in standard EN 10305-1 and is suitable for further forming operations.

References:

[1] BAČA, J., BILÍK, J. Technology of forming. Bratislava: Vydavatel'stvo STU, 2000, 242 s. ISBN 80-227-1339-2
[2] RIDZOŇ, M. Research of technological parameters affecting the production and properties of steel tubes. Written thesis of disertation exam. Trnava, 2009.
[3] EN 10002-1 : 2001 Tensile testing of metallic materials. Method of test at ambient temperature, First edition.
[4] EN ISO 4287 : 1997 Geometrical Product Specifications (GPS) - Surface Texture: Profile Method - Terms, Definitions and Surface Texture Parameters, First edition.

